Mannose binding lectin and complement pathway in brain ischemic injury: studies in mouse models and patients

Dr. Rosalia Zangari

Tutor: Prof. Serenella Civitelli
Supervisor: Dr. Maria Grazia De Simoni

Doctoral School in GENETICS, ONCOLOGY and CLINICAL MEDICINE (GenOMeC)
Academic year 2012
XXIV cycle
INDEX

Preface ➢ pag. 1
Sources of Funding ➢ 1
List of publications related to this thesis ➢ 1
List of main abbreviations ➢ 2

Abstract ➢ pag. 4

INTRODUCTION: ➢ pag. 6

Section 1: Stroke ➢ 7
❖ Epidemiology
❖ Risk Factors
❖ Major recognized mechanisms for ischemic stroke
❖ Pathophysiology of ischemic stroke and SAH

Section 2: Immune mechanism of stroke ➢ 13
❖ The complement system in stroke ➢ 18
 - The lectin pathway

Section 3: MBL in health and disease ➢ 24
❖ General features of MBL
❖ Human MBL: from gene to protein ➢ 25
 - The organization of the human MBL2 gene
 - The structure of the human MBL protein
 - Genetic variations in the MBL2 gene
❖ The MBL2 genetic polymorphism ➢ 29
 - Maintenance of high frequencies of MBL2 variant alleles in different populations

...
- Consequences of MBL2 gene variations on MBL serum levels 33
 ✓ Clinical impact of various MBL levels 34
 - Low MBL levels: role in infectious and autoimmune diseases 34
 - Low MBL levels: role in ischemic injury 34
 ✓ MBL therapy: inhibition and replacement 36
 ✓ MBL related proteins 37
 - MBL associated serine proteases (MASPs) 37

Section 4: Ficolins in health and disease pag. 38
 ✓ General features of ficolins 38
 ✓ Clinical impact of ficolins in ischemic injury 40

AIM OF THE STUDY pag. 42

MATERIALS AND METHODS pag. 47
Section 1: Brain ischemia in mice 48
 ✓ Animals 48
 ✓ Experimental focal ischemia 48
 - Transient ischemia 49
 - Permanent ischemia 50
 - Sham surgery 51
 - Intracardiac perfusion 51
 - Neurological deficits 52
 - Quantification of infarct size and edema 52
 ✓ Immunofluorescence and confocal analysis 53
 ✓ Elisa of functional MBL/MASP-2 54
 ✓ Western blot of C3 fragments 54
Section 2: Subarachnoid hemorrhage patients

- Patients
- Management
- Clinical treatment
- Definition of endpoints
 - Criteria for evidence of clinical status
 - Criteria for evidence of ischemic events
 - Criteria for evidence of clinical vasospasm
- Blood sampling
- Quantification of MBL and other complement parameters
 - Elisa
 - Western Blot
- Quantification of human plasma levels of S100β and C-reactive protein
- Statistics

RESULTS (Chapter I)

The lectin pathway in brain ischemic injury in mice

- Brain ischemia induced MBL deposition in ischemic tissue
- Brain ischemia induced lectin pathway activation
- Brain ischemia induced full complement activation
- MBL deficiency induced a protective effect in brain ischemic injury

RESULTS (Chapter II)

The lectin pathway in subarachnoid haemorrhage in humans

- Patients and controls
- The complement system is activated after SAH
 - C3 fragments and sC5b-9 levels in patients and controls
- C3 and sC5b-9 and brain injury severity 77

- SAH induced lectin complement activation 78
- MBL levels in patients and controls 78
- MBL and brain injury severity 79
- MBL/MASP-2 levels in patients and controls 80
- MBL/MASP-2 and brain injury severity 81
- Ficolin-3 levels in patients and controls 83
- Ficolin-3 and brain injury severity 84

- Association between MBL, MBL/MASP-2 and ficolin-3 85
- Plasma CRP and S100β levels and outcome 87

DISCUSSION pag. 93

CONCLUSION 100

ONGOING STUDIES 102

References 105

Related link
Preface

The following body of work was performed at the Institute of Pharmacological Research “Mario Negri”, Milan, Italy, under the direction of Dr. Maria Grazia De Simoni and the supervision of Dr. Elisa R. Zanier.

Sources of Funding

This study was supported in part by an Italian Ministry of Health Young Investigators Award 2009 (to Dr Zanier) and by Cariplo 2009-2630.

List of publications related to this thesis

Lectin pathway of complement activation after subarachnoid hemorrhage. This paper is a work in progress
List of main abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARDS</td>
<td>acute respiratory distress syndrome</td>
</tr>
<tr>
<td>C1-INH</td>
<td>C1-inhibitor</td>
</tr>
<tr>
<td>CAMs</td>
<td>cell adhesion molecules</td>
</tr>
<tr>
<td>CCA</td>
<td>common carotid artery</td>
</tr>
<tr>
<td>CI</td>
<td>cerebral ischemia</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CR1</td>
<td>complement receptor 1</td>
</tr>
<tr>
<td>CRD</td>
<td>carbohydrate recognition domains</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>computer tomography</td>
</tr>
<tr>
<td>DCI</td>
<td>delayed cerebral ischemia</td>
</tr>
<tr>
<td>ECA</td>
<td>external carotid artery</td>
</tr>
<tr>
<td>ECI</td>
<td>early cerebral ischemia</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunoassorbent assay</td>
</tr>
<tr>
<td>GOS</td>
<td>Glasgow outcome scale</td>
</tr>
<tr>
<td>Hgb</td>
<td>hemoglobin</td>
</tr>
<tr>
<td>Hp-Hgb</td>
<td>HaptoglobinHb protein</td>
</tr>
<tr>
<td>I/R</td>
<td>ischemia/reperfusion</td>
</tr>
<tr>
<td>ICA</td>
<td>internal carotid artery</td>
</tr>
<tr>
<td>ICP</td>
<td>intracranial pressure</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>MAC</td>
<td>membrane attack complex</td>
</tr>
</tbody>
</table>
MASPs MBL-associated serine proteases
MBL Mannose Binding Lectin
MBL-/- MBL-A and MBL-C double knockout mice
MCP and membrane cofactor protein
MRI magnetic resonance imaging
OD optical density
PAMPs pathogen-associated molecular patterns
pMCAo permanent middle cerebral artery occlusion
PWI Perfusion-weighted Imaging
RBCs Red blood cells
rhC1-INH recombinant human C1 inhibitor
SAH subarachnoid hemorrhage
SC5b-9 plasma levels of terminal complement complex
Sham sham-operated
SNP single nucleotide polymorphisms
sPRM small pattern recognition molecule
TCC terminal complement complex
tMCAo transient middle cerebral artery occlusion
VSP clinical vasospasm
WFNS World Federation of Neurological Surgeons
Abstract

Background. The involvement of the complement system in brain injury has been scarcely investigated. Here we document the pivotal role of lectin pathway, initiated by mannose binding lectin (MBL) and ficolin-3, in brain ischemic injury in mice and humans.

We first evaluated the role of the lectin pathway in brain ischemic mice.

In order to investigate the clinical relevance of these experimental observations, the second aim was to evaluate the relevance of the lectin pathway in subarachnoid hemorrhage (SAH) patients. Brain ischemia is a main determinant of unfavorable outcome in SAH patients. It can play a role in the acute phase as a consequence of the initial intracranial bleeding and/or at delayed stages due to cerebral vasospasm.

Methods and results: brain ischemic injury in mice. Focal ischemia was induced in C57Bl/6 (WT) or in MBL-A and MBL-C double knockout mice (MBL-/-), by permanent or transient middle cerebral artery occlusion (pMCAo and tMCAo, respectively). Neurological deficits and infarct volume were measured 48 h after ischemia. MBL presence on cerebral vessels was assessed by immunostaining and confocal microscopy. The activation of lectin pathway after ischemia was analyzed by measuring circulating functional MBL/MASP-2 complexes by ELISA. Complement activation was assessed by western blot analysis of C3 fragments in plasma samples.

We first observed that MBL is deposited on ischemic vessels up to 48h after injury and that functional MBL/MASP-2 complexes and C3 complement fragments were significantly increased after tMCAo and pMCAo, indicating that the lectin pathway is activated in the ischemic injury.

Next, we demonstrated that MBL-/- mice were protected from anatomical and functional ischemic injury, showing 28% and 41% lesion reduction after tMCAo and pMCAo, respectively, compared to WT, thus suggesting a deleterious role of MBL and suggesting that inhibition of this protein could lead to neuroprotection.
Methods and results: subarachnoid hemorrhage patients.

Thirty-nine patients with SAH were enrolled. Clinical vasospasm (VSP) was defined as neuro-worsening with angiographic confirmation of vessel narrowing. Cerebral ischemia was defined as a hypodense lesion on computer tomography (CT) scan performed before Intensive Care Unit (ICU) discharge. Early cerebral ischemia was defined as a hypodense lesion on CT performed in acute phase (ECI), while delayed ischemia (DCI) was defined as a new hypodense lesion on CT scan performed in delayed phase. Six-month outcome was assessed using Glasgow outcome scale (GOS). Clinical severity, radiological status and outcome were studied in relation to lectin concentrations. Plasma levels of MBL, MBL/MASP-2 functional complexes, ficolin-3 and of complement factors (C3 and C5b-9) from patients and 20 healthy subjects, were determined in acute (1-3 day) and post acute phase (4-14 day) through western blot analysis and ELISA.

The plasma concentrations of MBL in SAH patients, however, was not significantly different from healthy subjects. Despite unaffected MBL levels, we have observed an acute and persistent reduction of MBL/MASP-2 levels.

On the contrary, a persistent increase in ficolin-3 was detected in SAH patients. Furthermore, ficolin-3 was related to brain injury severity. Namely, significantly lower levels of ficolin-3 were found in: severe patients, patients with VSP and patients with CT cerebral ischemia.

Conclusion: Our data show an important role for the lectin pathway in the pathogenesis of acute brain injury and provide a strong support to the concept that lectin pathway may be a relevant therapeutic target in humans with a wide therapeutic window of application.
References

Related links
American Heart Association. 2012 Heart and Stroke Statistical Update. Available at http://my.americanheart.org/professional/General/Heart-Stroke-2012-Statistical-Update_UCM_434526_Article.jsp

Acknowledgements
First of all I would like to thanks my tutor Serenella Civitelli for giving me courage and support in completing this work.

I would like to thank my supervisor, Maria Grazia De Simoni for giving me the opportunity to work at the Mario Negri Institute and for her continual support and advice throughout this work. I would like to express my gratitude to Dr. Elisa R Zanier for her help and advice during this period.

Their helps me a lot in all the stages of this thesis and gave me ideas to implement, things to achieve my desired goals.

I would like to extend my appreciation to all of the staff of Inflammation and Nervous System Diseases at Mario Negri Institute, for welcoming me into their group and giving me friendship and encouragement throughout the course of this work.

I would especially like to thank Franca Orsini, Sara Parrella and Tommaso Zoerle for his technical assistance and expertise their brought for solving technical problems I faced during the thesis.

Finally, I would like to thank my family members and my friends who have been a constant source of support and encouragement in all respects during my entire course work.