

Proteomic Approaches in Cardiovascular Diseases

Antonella Cecchettini

Università di Pisa Istituto di Fisiologia Clinica-CNR

Proteomics is the science aiming at investigating and establishing the identity, quantity, structure and function of all proteins present in a tissue or in a cell, describing how these properties change with time, localization or physiological state.

Goals of Proteomics in Medicine

•Comparison between pathological and control samples to detect disregulated proteins

- Target identification for drug therapy
- Proteomics imaging of tissues
- Genomic and proteomics integrated strategy for system biology

BIOMARKER DISCOVERY

Cardiovascular diseases

Adult VSMCs are highly specialized cells but retain also a great plasticity that allows them to undergo reversible phenotype changes (phenotype switch). Thanks to these characteristics they play a critical role in vascular repair. The other face of the coin of this high plasticity is that it prompts the cells to respond to environmental signals leading to the development of vascular diseases such as atherosclerosis, hypertension and vascular aneurysms.

The cell model

CHAPTER TWO

VASCULAR SMOOTH-MUSCLE-CELL ACTIVATION: PROTEOMICS POINT OF VIEW

Antonella Cecchettini,*^{,†} Silvia Rocchiccioli,* Claudia Boccardi,* and Lorenzo Citti* Tissue and Cell 38 (2006) 111-120

Resting smooth muscle cells as a model for studying vascular cell activation

Laura Poliseno^a, Antonella Cecchettini^b, Laura Mariani^a, Monica Evangelista^a, Fernanda Ricci^a, Franco Giorgi^b, Lorenzo Citti^a, Giuseppe Rainaldi^{a,*}

^a Laboratory of Molecular and Gene Therapy, Institute of Clinical Physiology, CNR, Area della Ricerca, Via Moruzzi 1, 56124 Pisa, Italy ^b Department of Human Morphology and Applied Biology, University of Pisa, Italy

- physiological conditions
- spindle-shaped morphology
- contractile activity
- low proliferation

Activated phenotype • pathological conditions • romboid morphology • synthetic-migratory activities • high proliferation

VSMCs phenotype diversity is regulated by a wide range of elements including mechanical forces, endothelial-VSMC interactions and many growth factors.

A tight cross-talk between extracellular and cellular factors is responsible for coordinated "outside-in" and "inside-out" signals, generating conditions for the establishment of a given phenotype.

Modified and new synthesized proteins trigger dramatic changes (cytoskeleton remodeling, activation metabolic pathways, of new exposure of diverse repertoire of membrane proteins, secretions of new factors) that contribute to the establishment of a phenotype.

surface

Role of VSMCs phenotype switch in Atherosclerosis development

Cardiovascular risk factors alter the vascular endothelium, which triggers a cascade of events, including the recruitment of leukocytes. Cytokines and growth factors are released by inflammatory cells and vascular cells.

VSMCs migrate, proliferate and synthesize extracellular matrix components on the luminal side of the vessel wall, forming the fibrous cap of the atherosclerotic lesion.

Role of VSMCs phenotype switch in Atherosclerosis progression

VSMCs may be important in maintaining the stability of the plaque through the formation of a stable fibrous cap.

Inflammatory mediators can induce thinning of the fibrous cap by expression of proteases, making the plaque weak and susceptible to rupture and thrombus formation.

In advanced disease, VSMCs are involved in extracellular calcification and give rise to fibrocalcific lesions.

NATURE MEDICINE • VOLUME 8 • NUMBER 11 • NOVEMBER 2002

Foam cell

Fibroblast

T-lymphocyte

Matrix

Calcification

Platelet and fibrin

Maizels

ď

calcification

VSMC

Endothelial cell

Monocyte

Matter of fact

VSMCs are involved not only in lesion growth but also in the process of plaque rupture

(1) What are the key environmental signals that induce phenotypic modulation after vessel injury?

(2) What are the molecular mechanisms activated by these factors?

(3) What are the molecular biomarkers truly specific and unique for a given VSMC phenotype?

(4) Is it possible to hypothesize easy, quick, and non-invasive assays able to describe VSMCs state and thus to predict arterial wall condition?

(5) Is it possible to develop therapeutic strategies using molecular tools specifically designed against key elements in the activation pathways or eventually capable of reverting the phenotypic switching?

Unsettled questions

VSMC Proteome Mapping

.....in the beginning 2D-gel

Image analysis of gels

The first protein expression map of VSMCs was published in 2001 (*McGregor et al. Proteomics 2001, 11:1405-1414*). The most detailed 2D-PAGE map was presented by Mayr et al who identified 235 proteins (*Proteomics 2005, 5:4546-4557*).

Challenges for 2-DE

- Sensitivity
- Dynamic range of concentration must be adequate.
- It's impossible to display all proteins in one single gel.
- hydrophobic proteins
- Less expressed proteins are very difficult to detect, even employing most sensitive staining methods.
- Silver staining does not give reliable quantitative data.
- Reproducibility
- Time consuming

VSMC Proteome Mapping

.....coming across a gel free, sensitive and reproducible strategy.....

Rocchiccioli et al. Proteome Science 2010, 8:15 http://www.proteomesci.com/content/8/1/15

Open Access

RESEARCH

A gel-free approach in vascular smooth muscle cell proteome: perspectives for a better insight into activation

Silvia Rocchiccioli¹, Lorenzo Citti¹, Claudia Boccardi¹, Nadia Ucciferri^{1,2}, Lorena Tedeschi¹, Caterina Lande^{1,2}, Maria Giovanna Trivella¹, Antonella Cecchettini^{2*}

Activated VSMC cytoskeleton/migration cytoskeleton/architecture/contr chaperones/stress proteins signal trasduction cell cycle/apoptosis cell cycle/proliferation 24.6% energy metabolism protein synthesis/housekeeping 20.9% transcription regulation intracellular traffic 8.21% 8.21% 5.22% 0.75% 4.48% 7.46% 7.46% 12.7%

LCMALDI-TOF/TOF analysis combined with preliminary fractionation of a total protein extract is a powerful tool for biomarker discovery because of its high sensitivity and high throughput capacity.

815 proteins

Differential protein expression analysis: Insight in VSMC activation

....availability of a suitable cell model and the assessment of a sensitive, reproducible workflow . Molecular BioSystems Molecular

HPLC fractionation and spotting anion-exchange SPE Crude extracts Quiescent VSMC Activated VSMC OFF ON serum stimulation

MALDI TOF/TOF

Cite this: DOI: 10.1039/c2mb05470a

www.rsc.org/molecularbiosystems

PAPER

Proteomics changes in adhesion molecules: a driving force for vascular smooth muscle cell phenotypic switch[†][‡]

Silvia Rocchiccioli,^a Nadia Ucciferri,^{ab} Laura Comelli,^a Maria Giovanna Trivella,^a Lorenzo Citti^a and Antonella Cecchettini§^{ab}

Received 14th November 2011, Accepted 2nd December 2011 DOI: 10.1039/c2mb05470a

20 differentially expressed proteins

Dynamic Article Links 🕞

.....allowed the visualization of a moving constellation.....

Table 1 Differentially modulated proteins in ON- vs. OFF-VSMCs

No.	Protein name	Accession number	Differential expression (ON/OFF)	Biological function	p-Value
1	Myosin 9	Q258K2	Up	Actin reorganization	4.2×10^{-4}
2	Myosin 10	P35580	Up	Actin filament movement, contraction	1.2×10^{-3}
3	Profilin-1	P07737	Up	Actin binding, migration	7.1×10^{-6}
4	PDI-A3	P30101	Up	Protein folding	1.1×10^{-3}
5	Fibronectin	P07589	Up	Cell adhesion and migration, integrins binding	5.7×10^{-6}
6	Calmodulin	P62157	Up	Calcium binding, contraction, proliferation	9.6×10^{-3}
7	Vimentin	P08670	Up	Cell shape maintenance, cytoskeleton stabilization	1.1×10^{-2}
8	Vinculin	P26234	Down	Focal adhesion structure and function regulator	1.0×10^{-2}
9	Transgelin	Q9TS87	Down	Actin binding, cytoskeleton modulator	2.1×10^{-3}
10	Transgelin 2	Q5E9F5	Down	Actin binding, cytoskeleton modulator	9.5×10^{-4}
11	Collagen alpha 1 (I)	P02453	Down	Extracellular matrix component	4.7×10^{-2}
12	Filamin A	P21333	Down	Actin- and integrin-binding	1.5×10^{-2}
13	LASP	Q99MZ8	Down	Actin-binding, cytoskeleton organization	1.5×10^{-3}
14	Talin-1	Q9Y490	Down	Plays a role in assembly of actin filaments, binds integrins and vinculin	2.9×10^{-2}
15	PDZ and LIM domain protein 1	Q5E9E1	Down	Adaptor molecules recruiting signaling molecules to the actin cvtoskeleton	2.8×10^{-2}
16	Caldesmon	Q05682	Down	Calmodulin- and actin-binding, contraction regulator	1.5×10^{-2}
17	Thymosin B 4	P62328	Down	G-actin binding	1.3×10^{-2}
18	HSP 27	Q5S1U1	Down	Chaperone activity, inhibition of apoptosis	6.3×10^{-3}
19	Thioredoxin	P82460	Down	A major ROS-scavenging system	4.6×10^{-2}
20	Peroxiredoxin-1	Q5E947	Down	Antioxidant, regulator of signal transduction	1.9×10^{-6}

Variables were compared using Student's t-test and are reported as protein up- or down-regulation between ON- vs. OFF-cells.

✓ Actin binding
✓ Modulator of cytoskeleton
✓ integrin signaling.
✓ Chaperones entailed in protein folding.
✓ Cell contraction

Elisa assay

Confocal microscopy

Western blot OFF ON HSP-27 PDI-A3 Vinculin Talin-1 Tubulin

★ differentially expressed
proteins are statistically
confirmed
★ and validated
★ protein localization and colocalization change

because growth factors selectively and directly promote phenotype switch through the activation of signal transduction networks characterized by tyrosine kinases functions

In order to identify:

★ triggering switches that could be suitable targets for therapeutic strategies

★ early markers of pathology for diagnosis

The most remarkable feature seems the recruitment of chaperones, i.e., molecules devoted to the make up and recycle of previously made proteins.

.....bumping into very precise and strong tools.....

Hammerhead ribozymes in therapeutic target discovery and validation

Lorena Tedeschi¹, Caterina Lande¹, Antonella Cecchettini² and Lorenzo Citti¹

¹Institute of Clinical Physiology, National Research Council, CNR, via Moruzzi, 1, 56124 Pisa, Italy ²Department of Human Morphology and Applied Biology, University of Pisa, via Roma 55, 56126 Pisa, Italy

PDGF-r knock down effects VSMC activation

Hammerhead trans-acting ribozymes are the smallest RNA molecules capable of endonucleolytic activity that specifically bind and cleave RNA sequences of definite Impressively, targets. these precise molecular tools are able to discriminate between targets differing by a single nucleotide.

***** Inhibits migration

★ Induces changes in chaperone phosphorylation

Lande et al. BMC Research Notes 2012, 5:268 http://www.biomedcentral.com/1756-0500/5/268 SHORT REPORT Open Access Ribozyme-mediated gene knock down strategy to dissect the consequences of PDGF stimulation in vascular smooth muscle cells

Caterina Lande^{12,4*}, Claudia Boccardi³, Lorenzo Citti¹, Alberto Mercatanti¹, Milena Rizzo¹, Silvia Rocchiccioli¹, Lorena Tedeschi¹, Maria Giovanna Trivella¹ and Antonella Cecchettini^{1,2}

Migratory activity is inhibited

Phosphoylation profile of chaperones changes

Combined proteomics and gene technologies knock down enable the identification of key pathways factors and key involved in VSMC activation and eventually suggest crucial elements suitable for diagnostic evaluations useful for and therapeutic planning new strategies.

SILAC to evaluate time-course modifications in a quantitative mannerbut the goal is quantitative phosphproteomics.....

SILAC: metabolic incorporation of aa with stable isotopic nuclei

1300 phosphopeptides, clustering into 380 protein groups were identified. Among them, 21 proteins resulted phospho-modulated at different times (10', 2hr) upon PDGF-BB stimulation. These proteins are involved in cytoskeleton remodeling, focal adhesions, gap junction assembly and cell activation.