Platelet Transfusion

P. Rebulla, MD

Center of Transfusion Medicine, Cellular Therapy & Cryobiology

Department of Regenerative Medicine

Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan (I taly)

ssues

- 1. Preparation of platelet (PLT) concentrates
- 2. PLT consumption
- 3. PLT count vs bleeding time
- 4. PLT count vs bleeding
- 5. Effectiveness during time in onc/hem
- 6. Transfusion dose
- 7. Apheresis vs whole blood PLT concentrates
- 8. Bacterial detection & pathogen inactivation
- 9. Reactions/adverse events
- 10. Transfusion trigger
- 11. Refractoriness to random donor PLT

Some guidelines on platelet transfusion

- **NIH**; Consensus Conference. Platelet transfusion therapy.
- **1989 Sacher**; Current practice and guidelines for the transfusion of cellular blood components in the newborn.
- **BCSH**; Guidelines for platelet transfusion
- **RCPE**; Consensus Conference. Leucocyte depletion of blood and blood components.
- **CAP**; Practice parameters for the use of fresh-frozen plasma, cryoprecipitate and platelets.
- **Blanchette**; *Platelet transfusion therapy in newborn infants.*
- **ASA**; Practice guidelines for blood component therapy.
- **BCSH**; Guidelines on gamma irradiation of blood components for the prevention of transfusion-associated graft-versus-host-disease.
- **BCSH**; Guidelines on the clinical use of leucocyte-depleted blood components.
- **GMA**; Guidelines for therapy with blood components and plasma derivatives.
- **ASCO**; Platelet transfusion for patients with cancer
- **Council of Europe**; Guide to the preparation, use and quality assurance of blood components. R 95 (15), 13th ed.

Platelet transfusion recipients

Hematology/oncology
 -Chemotherapy
 -Transplantation
 Surgery

The clinical question: Why do we give platelets to hem/onc patients?

- Bleeding treatment (therapy)
- Bleeding prevention (prophylaxis)

100 years ago

THE RELATION OF BLOOD PLATELETS TO HEMORRHAGIC DISEASE

DESCRIPTION OF A METHOD FOR DETERMINING THE BLEEDING TIME AND COAGULATION TIME AND REPORT OF THREE CASES OF HEMORRHAGIC DISEASE RELIEVED BY TRANSFUSION *

From the Hunterian Laboratory of Experimental Pathology, Johns Hopkins University

> W. W. DUKE, M.D. KANSAS CITY, MO.

JOUR. A. M. A. OCT. 1, 1910

Fig 3. Great delay in bleeding time. From Case 1. Platelet count 3,000, coagulation time normal. The blots in Series A were taken immediately after the ear was pricked; Series B, 20 minutes; C, 40 minutes; D, 60 Minutes, and E, 80 minutes later. The bleeding time at this time was 90 minutes. Series F, showing a normal bleeding time, was taken after the transfusion. Platelet count was then 110,000.

WW Duke, JAMA 1910

TABLE 2.—DETAILED FINDINGS IN CASE 1							
Date.	Platelet Counts.	Plates in Stained Blood Smears.	Bleeding Time. (Minutes.)	Coagulation Time.	Urine.	Stools.	Epistaxis.
May 8. May 9. May 10. May 11. (Transfusions).	6.000. None seen 3,000.	1-2 per smear None seen 2 per smear	47 90 50 +	5 minutes 5 minutes 5 minutes 4½-5 minutes	Smoky Smoky Smoky Smoky	Tarry Tarry Tarry Tarry Tarry	Moderate. Moderate. Moderate. Extreme.
May 12. May 13. May 13. May 14. May 15. May 16. May 17. (Spontaneous increase)	123,000. 1,500 in the number of	1-3 in each field. 1 in 3-1 fields 3 per smear 1 per smear 3 per smear 9 per smear	8 3 30 40 50 50	4½ miautes 5 minutes	Clear. Clear. Clear. Clear.	Tarry Yellow. Occult blood. Fresh blood.	None. None. None. Slight. Moderate. Moderate.
May 18. May 19. May 23. May 24.	84,000	1-6 per field 3-3 per field	2 2 4	5 minutes	Clear	Occult blood.	None. None. None. None.

WW Duke, JAMA 1910

Transfusion.—On May 11, the patient lost over a pint of blood from the nose, and his condition became so critical that he was transfused at 2 a. m. by Dr. F. T. Murphy. An Armenian friend of about the same age was donor. That a were light yellow, but contained a small amount of occult blood. No tresh purpuric spots appeared and the present began to fade, disappearing completely in five days. Thirtysix hours after transfusion it could be seen from stained smears that the platelets were decreasing rapidly in number. and on the third day one could be found only after prolonged search. At this time the bleeding time was again delayed. The day following this the patient's nose began to bleed and fresh blood appeared in the stools. Since the onset of the disease the patient had had an irregular temperature, varying from 99 to 103 F. This came to normal, except for slight remissions, on May 20. Apparently the disease had run its course, for at this time plates reappeared in the blood (80,000), and hemorrhage from ear-pricks would last for only three minutes. There was no further epistaxis or melena. Convalescence was uneventful, and since then the patient has continued his vocation without symptoms.

WW Duke, JAMA 1910

Key factors for effective platelet support in oncology and hematology

- Platelet concentrates of good quality from carefully selected blood donors
- Patient monitoring and laboratory evaluation (signs of hemorrhage and anti-HLA antibody detection)
- Prompt treatment of refractoriness

Platelet transfusion policy in "stable" hematology recipients

- Preferably match for ABO&Rh
- Transfuse 55-70 x 10⁹ random-donor platelets per 10 kg recipient body weight when plt count falls below 10,000/uL
- Determine post-transfusion platelet count increment
 - At 1 hour (10-60 min)
 - At 24 hours
- Select HLA matched or compatible platelets for recipients refractory and HLA alloimmunized to random donors

Apheresis device

Platelet kit

Platelet apheresis

1. Whole blood unit 2. Centrifuged unit 3. Transfer of additive solution into red cells

Manual preparation of blood components

1. Plasma removal

2. Buffy coat removal 3. Transfer of additive solution into red cells

Automated preparation of blood components

Pools of platelets suspended in 30% plasma - 70% crystalloid solution

-Unit standardization

Method	Source	Plt count (10 ⁹ /U)	Residual WBC after reduction (10 ⁶ /U)	pH at end of storage
PRP	AABB	>55	<0.83	>6.2
PRP	CoE	>60	<0.2	6.4-7.4
Buffy Coat	CoE	>60	<0.2	6.4-7.4
Apheresis	AABB	>300	<5	>6.2
Apheresis	CoE	>200	<1	6.4-7.4

Standards from American Association of Blood Banks and Council of Europe

Methods used to assess the effectiveness of platelet transfusions*

		Criteria for an adequate response			
Method	Calculation	10 to 60 minutes post- transfusion	18 to 24 hrs post- transfusio n		
Absolute Platelet Increment (API)	Post- minus pre transfusion platelet counts	NA	NA		
Corrected Count Increment (CCI)	(Post- minus pre transfusion platelet counts) x (patient's body surface area)/ Number of platelets transfused	>4,500 to 5,000 platelets/m ²	>2,500 platelets/m ²		
Percent Platelet Increment (PPI)	Observed/Expected Platelet count increment	>20%	>10%		

* modified from Bishop et al (1992), Rebulla (1993), and Schiffer et al (2001).

Computation

PPI= <u>Post-Pre</u> Dose/Vol

> = <u>Post-Pre x Vol</u> Dose

CCI= <u>Post-Pre x BSA</u> Dose

PPI and CCI are conceptually similar: both take into account (1) post-transfusion increment, (2) platelet dose and (3) an index of recipient's size (blood volume or BSA)

Product

- Apheresis vs PRP vs BC methods

Biochemical and clinical equivalence
Fewer donor exposures with apheresis
Local convenience
Availability
Cost analysis

Product

-Crystalloid storage solutions

- 1. Plasma-Lyte
- 2. Composol
- 3. Platelet Additive Solution (PAS)
 ➤ -I,-II, -III, PAS-III modified
- 4. Intersol, SSP, SSP+
- Important component: 27-33 mmol L⁻¹ sodium acetate (not in PAS-I); plt use about 2 mM acetate/day
- Final storage media: about 70% crystalloid solution / 30% plasma
- 'High-titer' ABO isoagglutinins which can be present in different donors are:
 - 1. first, diluted in the pool and then,
 - 2. diluted 1:3 with the crystalloid solution

Platelet swirling for quality assessment

Simple test: can be performed at time of use in the clinical ward

Transfusion Medicine, 2003, 13, 173-187

REVIEW ARTICLE

The quality of platelets after storage for 7 days

R. Cardigan* and L. M. Williamson*† *National Blood Service and †Department of Haematology, University of Cambridge, Cambridge, UK

Received 31 March 2003; accepted for publication 2 June 2003

Table 4.	Platelet	additive	solution	composition	$(mmolL^{-1})$
----------	----------	----------	----------	-------------	----------------

	PASI	PASII	PASIII	PASIII modified	Plasma-Lyte	GAC	Composol
A # 11 11	-				6.5	<u></u>	0.0
Sodium chloride	70	113-3	77	70	90	90	90
Tri-sodium citrate	30	10	11	11	-	11	11
Sodium acetate	_	30	33	33	27	27	27
Sodium phosphate	5	-	29	25	-		-
Sodium gluconate	_	-	-	-	23	23	23
D-Mannitol	30	_	-	-	-		-
Potassium chloride	10	-	-	5	5	5	5
Magnesium chloride/sulphate	-	-	-	1.5	3	3	1.5

				Percentage re	covery		Survival (days)		
Platelet type	Storage medium		n	Day 0/1	Day 5	Day 7	Day 0/1	Day 5	Day 7	Reference
PRP	Plasma	PL146	5	60*	38*		7.6*	5.4*		Murphy et al. (1982)
		PL732	7-11	53*	50*		7.0*	6.2*		
PRP	Plasma		8	87 ± 21	59 ± 17	$46 \pm 8^{+}_{$		6.4 ± 3.0	5.4 ± 1.01	Archer et al. (1982)
PRP	Plasma		16			40 ± 7			6.3 ± 1.4	Rzad et al. (1982)
PRP	Plasma		6			49 ± 12			5.8 ± 0.2	Lovric et al. (1985)
PRP	85% Plasma-Lyte		6		63 (46-77)			7.7 ± 0.8		Rock et al. (1991)
PRP	Plasma		10	Two centres	46 ± 81	$45 \pm 8 \ddagger$		$7 \cdot 2 \pm 1$	$6.8 \pm 1.0 \ddagger$	Simon et al. (1987)§
			9		43 ± 9	$45 \pm 10 \ddagger$		6.8 ± 1	$8.0 \pm 0.8 \ddagger$	
PRP	Plasma		10		43 ± 10	56 ± 8		7.3 ± 1.2	$6 \cdot 2 \pm 1 \cdot 1$	Heaton et al. (1990)
	80–90% PSM				40 ± 9	59 ± 6		6.4 ± 1.2	5.9 ± 0.7	
PRP	Plasma		5-10	55 ± 10	41 ± 11	36 ± 11	7.9 ± 1.0	$6 \cdot 1 \pm 1 \cdot 7$	4.5 ± 1.6	Holme et al. (1990)¶
	80–90% PSM				45 ± 12	51 ± 8		6.7 ± 1.3	6.0 ± 0.7	
PRP	Plasma		9	60 ± 7	49 ± 10		8.8 ± 0.9	6.8 ± 1.2		Keegan et al. (1992)
PRP	Plasma		5	64 ± 12	49 ± 10		7.7 ± 1.3	6.5 ± 1.2		Holme et al. (1993)
Haemonetics MCS	Plasma		6-10		79 ± 20	53 ± 21		6.0 ± 1.1	5.0 ± 1.6	Slichter et al. (2001)
	Plasma-Lyte				79 ± 22	64 ± 14		5.9 ± 1.4	5.9 ± 0.6	
CS3000	Plasma		9	58 ± 12	58 ± 12		5.5 ± 1.5	5.6 ± 1.1		Shanwell et al. (1989)
CS3000	Plasma		4		78 ± 10			$6 \cdot 1 \pm 0 \cdot 9$		Rock et al. (1989a)
CS3000	Plasma		18		53 ± 9			6.5 ± 0.8		Holme et al. (1994)
	PSM		18		50 ± 8			6.8 ± 0.9		
V50	Plasma		5		66 ± 7			7.3 ± 1.3		Rock et al. (1989b)
Spectra/Trima	Plasma		24		63 ± 11	$53.9 \pm 14^{**}$		6.7 ± 1.6	$5.6 \pm 1.9**$	Dumont et al. (2002)
Buffy coat	Plasma		9	64 ± 6	53 ± 8		8.7 ± 1.3	6.8 ± 0.8		Keegan et al. (1992)
Buffy coat	PASI		9	55 ± 9	52 ± 10		7.8 ± 2.0	5.8 ± 0.5		Eriksson et al. (1993)
Buffy coat	Plasma		11		51 ± 16			6.5 ± 1.5		Turner et al. (1996)
-	70% PASII		11		30 ± 14			$5 \cdot 1 \pm 1 \cdot 3$		
	70% Plasma-Lyte		11		53 ± 16			5.9 ± 1.3		

Table 2. Relationship of recovery and survival of platelets after transfusion to platelet concentrate age in healthy volunteers

PRP, platelet-rich plasma; PSM, platelet storage media.

*Data estimated from figure

†Significance of day 7 versus day 5 not stated.

‡Not significant day 7 versus day 5.

§Pack for day 7 storage different to day 5.

Data to day 14

Transfusion Medicine, 2003, 13, 173-187

REVIEW ARTICLE

The quality of platelets after storage for 7 days

R. Cardigan* and L. M. Williamson* + * National Blood Service and + Department of Haematology, University of Cambridge, Cambridge, UK

Received 31 March 2003; accepted for publication 2 June 2003

				1–4 h CCI			12-24 h CCI			
Platelet type	Storage medium	Patients (n)	Transfusions (n)	Day 0/1	Days 2–5	Days 6–7	Day 0/1	Days 2–5	Days 6–7	Reference
PRP	Plasma			16.6 ± 7.4	13.3 ± 6		12.4 ± 6.7	8.9 ± 4		Schiffer et al.
				(n = 146)	(n = 34)		(n = 84)	(n = 20)		(1986)
PRP	Plasma	16	32	$20{\cdot}1\pm8{\cdot}4$	12.2 ± 8.1	$10.0 \pm 7.2*$	10.8 ± 4.4	7.5 ± 5.6	7·0±5·5*†	Hogge et al. (1986)
Apheresis V50/CS-3000	Plasma	27	419	$11{\cdot}0\pm5{\cdot}2$	D3 10.2 ± 4.8 D5 10.2 ± 4.5		6.0**	D3 5-0**		Leach & AuBuchon (1993)
Apheresis	Plasma		21		23 10 2 2 4 3	$14{\cdot}4\pm8{\cdot}8$		0000		AuBuchon et al. (2002)
BC+ apheresis	Plasma	26		12.3 ± 0.7 (<i>n</i> = 52)	5.7 ± 1.4 (<i>n</i> =7)		8.6 ± 0.7 (n = 52)	2.9 ± 1.0 (<i>n</i> = 7)		Duguid <i>et al.</i> (1991)
BC	Plasma		31	12.2 ± 0.45	(- <i>1</i>)		11.2 ± 0.5	D5† versus D1		Pietersz et al.
BC	Plasma 70% PASI†	18	6 12	17.4 ± 4.8 20.9 ± 10.8	15.5 ± 9.2 15.0 ± 7.0		11.2 ± 9.2 13.5 ± 8.3	7.1 ± 6.0 8.0 ± 6.4		Eriksson et al.
BC	Plasma 70% PASI†	36	41	29 (10–49) 27 (–8–79)	24 (0-55) 23 (5-41)		8 (-4-23) 11 (-10-31)	6(-9-39) 6(-7-24)		Eriksson et al.
BC	70% PASII or Plasma-Lyte	9	9	-/(• //)	22 (15–29) 24 (17–31)			11 (4-18) 14 (7-21)		Van Rhenen
BC	Plasma 70% PASI	12	192	21.6 ± 10.3 17.9 ± 5.3	19.9 ± 6.7		13.1 ± 8.8	(, 21)	10.0 ± 6.9	de Wildt-Eggen
BC	65% PASI	28	28	17.9 ± 5.5	12-6 (35-22)		9-9 ± 7-4	8.9 (-1.7-19.7)	9.1 ± 0.7	Van der Meer
BC	Plasma				13.6 ± 8.1 (<i>n</i> = 22)	10.9 ± 5.5 ($n = 14$)				Dijkstra <i>et al.</i> (2002)

Table 3. Influence of platelet concentrate storage on platelet count increment following transfusion to thrombocytopenic patients

CCI (corrected count increment) = (post-transfusion platelet count minus pre-transfusion platelet count) × body surface area(m²)/dose platelets transfused (10¹¹)

*Storage at day 7 in different pack to day 3.

†Not significant - day 7 versus day 3.

1PAS units buffy coat whereas plasma units collected by apheresis.

§CCI at 15 min 4 h.

Significance of day 7 versus day 5 not stated.
**Value estimated from figure.

Transfusion Medicine, 2003, 13, 173-187

REVIEW ARTICLE

The quality of platelets after storage for 7 days R. Cardigan* and L. M. Williamson* + * National Blood Service and + Department of Haematology, University of Cambridge, Cambridge, UK

Received 31 March 2003; accepted for publication 2 June 2003

Paired in vitro and in vivo comparison of apheresis platelet concentrates stored in platelet additive solution for 1 versus 7 days

Agneta Shanwell, Beatrice Diedrich, Cecilia Falker, Berit Jansson, Per Sandgren, Lars Sundkvist, Leif Svensson, Mervi Vesterinen, and Hans Gulliksson

Transfusion, June 2006

TABLE 1. In vitro analysis of apheresis PCs after 1 and 7 days of storage*							
Variable	Day 1	Day 7	p Value				
MPV (fL)	7.0 ± 0.8	7.3 ± 0.8	NS				
pH	7.09 ± 0.11	7.11 ± 0.08	NS				
Lactate (mmol/L)	1.3 ± 0.5	6.6 ± 1.2	<0.0001				
pCO₂ (kPa at 37°C)	3.41 ± 0.52	2.91 ± 0.69	NS				
pO₂ (kPa at 37°C)	18.9 ± 2.2	19.3 ± 3.4	NS				
Bicarbonate (mmol/L)	7.5 ± 1.2	6.7 ± 1.6	NS				
Glucose (mmol/L)	6.4 ± 0.7	3.5 ± 1.1	<0.0001				
LDH (%)	4.7 ± 1.4	6.2 ± 1.9	<0.01				
ATP (µmol/10 ¹¹ PLTs)	5.64 ± 0.56	4.41 ± 0.46	<0.0001				
HSR (%)	57.1 ± 7.2	64.1 ± 10.9	NS				
RANTES (pg/10 ⁸ PLTs)	110.7 ± 76.6	277.6 ± 50.8	<0.005				
PF4 (IU/10 ⁶ PLTs)	19.9 ± 9.6	59.8 ± 7.5	<0.0001				
* Data are expressed as	means ± SD (n = 10).					

NS = nonsignificant.

Paired in vitro and in vivo comparison of apheresis platelet concentrates stored in platelet additive solution for 1 versus 7 days

Agneta Shanwell, Beatrice Diedrich, Cecilia Falker, Berit Jansson, Per Sandgren, Lars Sundkvist, Leif Svensson, Mervi Vesterinen, and Hans Gulliksson

Transfusion, June 2006

TABLE 2. PLT recovery and survival time (of
autologous PLTs after storage for 1 and 7 d	ays

	Recovery	Survival
Day 1	69 ± 12%	8.2 ± 1.7 days
Day 7	$53 \pm 13\%$	5.1 ± 1.7 days
p Value	<0.05	< 0.005
Day 7 compared with Day 1	80 ± 32%	$65 \pm 26\%$

Kerkhoffs et al. A Multicenter Randomized Study of the Efficacy of Transfusions with Platelets stored in Platelet Additive Solution II versus Plasma. Blood 2006

		Plasma PC	PAS II PC	P-value
		(n = 311)	(n = 373)	
Numbers of platelets/product	$10^9 \pm sd$	412 ± 93	391 ± 119	p = 0.01
Storage time	$days \pm sd$	3.5 ± 1.3	3.5 ± 1.1	n.s.
pH	\pm sd	7.12 ± 0.04	7.08 ± 0.04	p < 0.0001
Product volume	$ml \pm sd$	356 ± 19	316 ± 11	p < 0.0001
Precount	$10^{9}/1 \pm sd$	13.3 ± 8.7	13.7 ± 10.5	n.s.
Platelet dose/kg body weight ¹	$10^9/1 \pm sd$	5.5 ± 1.7	5.3 ± 2.0	n.s.
2				
Transfusion response ²				
1-hour		n = 274	n = 337	
CI		32.2 ± 17.1	24.6 ± 14.8	p=0.001
CCI		13.9 ± 7.0	11.2 ± 6.4	p=0.004
24-hour		n = 282	N = 334	
CI		20.6 ± 16.0	16.3 ± 14.1	p=0.028
CCI		8.4 ± 6.9	6.8 ± 6.4	p=0.09

Table 2 Platelet product parameters, dosage and transfusion response

n = number of transfusions. ¹ Per transfusion. ² General linear mixed model acounting for within-patient-correlation of observations (repeated measurements).

Kerkhoffs et al. A Multicenter Randomized Study of the Efficacy of Transfusions with Platelets stored in Platelet Additive Solution II versus Plasma. Blood 2006

Table 3 Platelet transfusions, red cell transfusions and transfusion interval

	Plasma PC	PAS II PC	p-value
	(n = 84)	(n = 84)	
Number of RBC transfusions	452	475	
Mean RBC /patient (± sd)	4.8 ± 4.1	5.1 ± 3.8	0.62
Number of PC transfusions	354	411	
PC transfusion interval (days ± sd)	► 2.0 ± 1.0	2.1 ± 1.0	0.52
Mean PC/patient (± sd)	4.2 ± 2.7	4.9 ± 2.8	0.10
Cumulative platelet dose/kg (x 10 ¹¹ /kg ± sd)	0.22 ± 0.15	0.23 ± 0.16	0.68

Message 1

In total (hem/onc + surg) about 45,000 platelet concentrates (or 7,700 adult platelet doses) are needed p.m.p./year
 →45,000/10⁶ population

THE 2007 NATIONAL BLOOD COLLECTION AND UTILIZATION SURVEY REPORT

Table 4-2. Estimated 2006 Collection and Transfusion by US Blood Centers and Hospitals of Non-Red-Blood-Cell Components

Activity	Blood Centers	Hospitals					
		Total	±95% Cl	2006 Total	±95% CI	2004 Total	% Change 2004-2006
collection/Production							
Apheresis Platelets [†]	10,297	642	343	10,939 (1,823)	2,467	9,161	19.4
WB-Derived Platelet Concentrates	2,215	181	108	2,396*	778	4,202	-43.0
Total Platelets	12,512	823	368	13,335*	2,795	13,362	-0.2
Plasma [‡]	5,286	398	139	5,684	1,129	4,651	22.2
Cryoprecipitate	1,173	24	18	1,197	393	1,164	2.8
ransfusions							
Apheresis Platelets [†]	411	8,681	837	9,092 (1,515)	916	8,338	9.0
WB-Derived Platelet Concentrates	223	1,073	291	1,296	495	1,537	-15.7
Total Platelets	634	9,754	934	10,388*	1,211	9,875	5.2
Plasma [‡]	215	3,795	271	4,010	405	4,089	-1.9
Cryoprecipitate	56	938	129	993	157	890	11.6
Outdated Non-RBC Components	424	<mark>45</mark> 1	80	875*	120	1,079	<mark>-18.</mark> 9

*for transfusion, includes apheresis plasma.

AABB—Barbee I. Whitaker, PhD Westat—James Green, MA; Melissa R. King, MSPH; Linda L. Leibeg, MS; Sunitha M. Mathew, MS; Karen S. Schlumpf, MPH; George B. Schreiber, ScD

Message 2

 Approximately 7,000 platelets per microliter per day are consumed to maintain the integrity of microvascular endothelium

range Relationship between platelet count and the survival of averaging Š Ş Equation 2 span (T) of by the Equa Complications included splenec transfusion and thrombocytopenic subjects with no 9 symbols) tion 2 with au in the range of from 10 to 11 days, and k in the solutions 2 the assumption of a finite platelet life platelet destruction (k) Drior according from 1,400 to 6,800 platelets per microliter per day. open and 8 constituting donor (triangles) correlated and circles) dashed lines) enomegaly 5 symbols) rate microlite rsplenism (ž **Dexi** data (closed normal egion (between (solid line) unde Bug dence of hyp platelets in autologous .700 platel aups) (diamonds) 01/2 days Fig 2. tomy

HANSON AND SLICHTER

Blood, Vol 66, No 5 (November), 1985: pp 1105-1109

Message 3

 Bleeding time increases as platelet count falls below 100,000 per microliter

Harker and Slichter. NEJM 1972; 287:155-159.
Message 4

 Clinically relevant bleeding occurs with no readily identifiable threshold of platelet count

GAYDOS ET AL, NEJM MAY 3, 1962

GAYDOS ET AL, NEJM MAY 3, 1962

Message 5

 The efficacy of platelet support in leukemia
 decreases during time Factors affecting posttransfusion platelet increments, platelet refractoriness, and platelet transfusion intervals in thrombocytopenic patients

Sherrill J. Slichter, Kathryn Davis, Helen Enright, Hayden Braine, Terry Gernsheimer, Kuo-Jang Kao, Thomas Kickler, Edward Lee, Janice McFarland, Jeffrey McCullough, Glenn Rodey, Charles A. Schiffer, and Robert Woodson

Message 6

 The risk of grade >2 bleeding is not affected by platelet transfusion doses ranging from 110 to 440 billion platelets/transfusion

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Dose of Prophylactic Platelet Transfusions and Prevention of Hemorrhage

Sherrill J. Slichter, M.D., Richard M. Kaufman, M.D., Susan F. Assmann, Ph.D., Jeffrey McCullough, M.D., Darrell J. Triulzi, M.D., Ronald G. Strauss, M.D., Terry B. Gernsheimer, M.D., Paul M. Ness, M.D., Mark E. Brecher, M.D.,
Cassandra D. Josephson, M.D., Barbara A. Konkle, M.D., Robert D. Woodson, M.D.,
Thomas L. Ortel, M.D., Ph.D., Christopher D. Hillyer, M.D., Donna L. Skerrett, M.D., Keith R. McCrae, M.D., Steven R. Sloan, M.D., Ph.D., Lynne Uhl, M.D.,
James N. George, M.D., Victor M. Aquino, M.D., Catherine S. Manno, M.D., Janice G. McFarland, M.D., John R. Hess, M.D., Cindy Leissinger, M.D., and Suzanne Granger, M.S.

METHODS

We randomly assigned hospitalized patients undergoing hematopoietic stem-cell transplantation or chemotherapy for hematologic cancers or solid tumors to receive prophylactic platelet transfusions at a low dose, a medium dose, or a high dose $(1.1\times10^{11}, 2.2\times10^{11}, \text{ or } 4.4\times10^{11} \text{ platelets per square meter of body-surface area, respectively}), when morning platelet counts were 10,000 per cubic millimeter or lower. Clinical signs of bleeding were assessed daily. The primary end point was bleeding of grade 2 or higher (as defined on the basis of World Health Organization criteria).$

Slichter et al, NEJM 2010

Table 3. Primary and Key Secondary End Points, According to Treatment Group.

Characteristic			Plat	elet Dose*		
	Low Dose (N=417)	P Value, Low vs. Medium Dose	Medium Dose (N=423)	P Value, Medium vs. High Dose	High Dose (N=432)	P Value, High vs. Low Dose
Primary end point						
≥1 Episode of bleeding of grade 2 or higher — % of patients	71	0.60	69	0.71	70	0.94
Secondary end points						
Highest grade of bleeding during study — % of patients		0.30		0.65		0.54
No bleeding or grade 1	30		32		30	
Grade 2	58		59		60	
Grade 3	9		7		8	
Grade 4	3		2		2	
Death from hemorrhage — no. of patients	0		0	1.00	1	1.00
No. of days with bleeding of grade 2 or higher		0.90		0.91		0.99
Median	1		1		1	
Interquartile range	0-4		0-4		0-4	
Days from randomization to onset of bleeding of grade 2 or higher		0.85		0.66		0.55
Median	7		7		8	
Interquartile range	3-18		3-19		3-19	

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Dose of Prophylactic Platelet Transfusions and Prevention of Hemorrhage

RESULTS

In the 1272 patients who received at least one platelet transfusion, the primary end point was observed in 71%, 69%, and 70% of the patients in the low-dose group, the medium-dose group, and the high-dose group, respectively (differences were not significant). The incidences of higher grades of bleeding, and other adverse events, were similar among the three groups. The median number of platelets transfused was significantly lower in the low-dose group (9.25×10^{11}) than in the medium-dose group (11.25×10^{11}) or the high-dose group (19.63×10^{11}) (P=0.002 for low vs. medium, P<0.001 for high vs. low and high vs. medium), but the median number of platelet transfusions given was significantly higher in the low-dose group (five, vs. three in the medium-dose and three in the high-dose group; P<0.001 for low vs. medium and low vs. high). Eleeding occurred on 25% of the study days on which morning platelet counts were 5000 per cubic millimeter or lower, as compared with 17% of study days on which platelet counts were 6000 to 80,000 per cubic millimeter (P<0.001).

... patients with bleeding vs days with bleeding...

Slichter et al, NEJM 2010

Figure 1. Days with Bleeding of Grade 2 or Higher in All Three Treatment Groups, According to Morning Platelet-Count Categories.

The percentage of days on which patients had bleeding of grade 2 or higher is shown, along with the associated 95% confidence intervals (dashed lines), according to the morning platelet-count category. Data are based on the 24,309 days during the study period on which patients had both a morning platelet count and information on bleeding of grade 2 or higher. Each patient-day was treated as a separate unit of analysis. Analyses were adjusted to take into account that for each patient, the results on various days may be correlated. The interaction between treatment group and morning platelet-count category was not significant, indicating that the effect of the morning platelet-count category did not differ significantly among the three treatment groups; therefore, the data from all three groups are combined.

Figure 1. Cumulative incidence functions¹⁶ for the occurrence of at least one bleed of WHO grades 1-4, 2-4, 3-4 and 4.

The risk of bleeding in thrombocytopenic patients with acute myeloid leukemia Kathryn E. Webert Richard J. Cook Chris S. Sigouin Paolo Rebulla Nancy M. Heddle

Haematologica 2006; 91:1532-1539

Minor bleeding predicting more severe bleeding The majority of severe bleeds (grades 3 and 4) were preceded by bleeds of lesser severity. The presence of grade 1 bleeding on the previous day was associated with a 2.6 times increased risk of clinically significant bleeding (grades 2, 3 and 4) (RR 2.55; 95% CI (1.18, 5.49); p=0.017). When looking at the risk of severe bleeding, the presence of mild bleeding (grades 1 and 2) on the previous day was associated with a 3.1 times increased risk of severe bleeding (grades 3 and 4) bleeding (RR 3.05; 95% CI (1.17, 7.95); p=0.023). Furthermore, the presence of grade 1 bleeding, although not reaching statistical significance, was associated with a 2.8 times increased risk of severe bleeding (grades 3 or 4) on the following day (RR 2.83, 95% CI (0.95-8.40), p=0.06). Grade 2 bleeding alone was not predictive of severe bleeding (grades 3 and 4) on the next day (RR 2.86; 95% CI (0.37, 21.93); p=0.31).

Message 7

- Whole blood derived (less expensive) and apheresis (more expensive) platelets show comparable clinical effectiveness
- Choice depends on donor availability and resources

Cost analysis

- Platelet concentrates from whole blood
- Platelet concentrates from apheresis

Lopez-Plaza, Transfusion 1999; 39: 925

TABLE 1. Actual number of transfusion episodes by diagnosis and blood products and calculated total donor exposures by diagnosis (mean \pm SD)							nd blood an ± SD)*
	A	Actual blood o	omponen	t transfusi	ons	To donor ex	otal posures†
Diagnosis or procedure	Red cells	Fresh-frozen plasma	SDPs	RDPs	Cryo- precipitate	Minimum	Maximum
HPCT					N. 199. 199.		
BC	10 ± 10	1±1	2±5	6±7	1±3	21 ± 24	68±79
AML	41 ± 42	6±21	15±26	33 ± 37	2±10	107 ± 144	396 ± 460
CML	32 ± 25	10±24	13±25	25±22	1±4	84 ± 72	310 ± 273
NHL	14 ± 13	1±2	2±5	12±19	0±0	28 ± 33	113 ± 155
CABG							
Male	6±6	5±6	1±1	1±1	1±4	13 ± 13	22±18
Female	10±9	6±9	1±1	1±1	1±6	19 ± 25	28±32

 Rounding errors account for any discrepancies between values shown for actual transfusions and calculated total donor exposures.

† Minimum donor exposure scenario assumes exclusive use of SDPs or one donor exposure per platelet transfusion episode for all platelet transfusion episodes. Maximum donor exposure scenario assumes exclusive use of RDPs or seven donor exposures per platelet transfusion episode for all platelet transfusion episodes.

Lopez-Plaza, Transfusion 1999; 39: 925

Lopez-Plaza, Transfusion 1999; 39: 925

Message 8

- Commercial methods are available to detect bacteria and to reduce/inactivate pathogens (and white cells) in platelets
- Cost/benefit ratio under evaluation

• Product

-Bacterial detection

Moving from 5 to 7 days platelet storage is operationally beneficial. However, about **1:3,000** platelet units are contaminated with bacteria. Actual **recipient risk** depends on circumstances (strain, immune competence, co-morbidity, etc)

Critical issues:

Analytical vs clinical sensitivity Time to detection Inoculum sample size Early vs late time of sampling Testing vs inactivation COSTS

The Continuing Risk of Transfusion-Transmitted Infections

Morris A. Blajchman, M.D., and Eleftherios C. Vamvakas, M.D., Ph.D., M.P.H.

Risks of Transfusion-Transmitted HIV, HBV, HCV, and Bacterial Infection in the United States, 1984–2005.

Changes reflect both the effects of screening tests introduced during this period and the decreasing incidence of HIV, HBV, and HCV infections in blood donors. Several measures to prevent the transmission of bacteria by platelet transfusion were implemented in or around 2004. Dashed lines represent estimates.

Bacterial Detection of Platelets: Current Problems and Possible Resolutions

Transfusion Medicine Reviews, Vol 19, No 4 (October), 2005: pp 259-272

Morris A. Blajchman, Erik A.M. Beckers, Ebbe Dickmeiss, Lilly Lin, Gillian Moore, and Ludo Muylle

Fig 1. Transfusion risks (per unit transfused) for various transfusion-transmitted infections. HBV indicates hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; RBCs, red blood cells; vCJD, variant Creutzfeldt-Jakob disease.

Methods for detecting bacteria in platelets

Method	Threshold for detection (CFU per mL)	Reference
Fall in pH measured with a dipstick	≥10 ⁷ -10 ⁸	Wagner 1996; Burstain 1997
Fall in glucose level measured with a dipstick	≥10 ⁷ -10 ⁸	Wagner 1996; Burstain 1997
Loss of swirling	≥10 ⁷ -10 ⁸	Wagner 1996
Gram Stain	≥ 10 ⁵ -10 ⁶	Yomtovian 1993
Chemiluminescence detection of ribosomal RNA	≥10 ⁴ -10 ⁵	Brecher 1994
Dielectrophoresis	≥10 ³ -10 ⁵	Brecher 2005
Fall in oxygen tension	≥10 ² -10 ³	Brecher 2001
Solid-phase laser cytometry	≥10 to 10 ³	Brecher 2005
Automated bacterial culture	≥10	Brecher 2005

-Pathogen inactivation

Amotosalen (S-59)RiboflavinOthers under development

INTERCEPT Blood System for Platelets and Plasma: Amotosalen + UVA (320-400 nm)

Slide from CERUS

INTERCEPT Blood System for Platelets Platelets in 35% plasma and 65% InterSol Compatible with apheresis and WB collection platforms Accommodates doubledoses

INTERCEPT UVA Illuminator

INTERCEPT Blood System for Plasma Compatible with apheresis and WB collection platforms One process produces up to 3 products.

INTERCEPT: Pathogen and WBC Inactivation Claims

Enveloped viruses HIV-1 HIV-2 HBV DHBV HCV **BVDV** HTVL-I HTLV-II CMV **WNV** SARS Vaccinia Chikungunya Dengue Influenza virus (H1N1) Avian flu virus (H5N1)

• Non-enveloped viruses

Bluetongue virus, type 11 Simian Adenovirus-15 Feline calicivirus Parvovirus B19 Human adenovirus 5 Gram-negative bacteria Klebsiella pneumoniae Yersinia enterocolitica

- Escherichia coli Pseudomonas aeruginosa
- Salmonella choleraesuis Enterobacter cloacae Serratia marcescens
- <u>Gram-positive bacteria</u>

Staphylococcus epidermidis Staphylococcus aureus Streptococcus pyogenes Listeria monocytogenes Corynebacterium minutissimum Bacillus cereus (vegetative) Lactobacillus sp. Bifidobacterium adolescentis Propionibacterium acnes Clostridium perfringens

Spirochetes Treponema pallidum Borrelia burgdorferi

Protozoa Trypanosoma cruzi Plasmodium falciparum Leishmania sp. Babesia microti

Leukocytes

>

Inactivated

Mirasol's Primary Mode of Action

The Mirasol PRT System inactivates disease-causing agents by altering their nucleic acids in two primary ways:

- 1. UV light only: reversible inactivation
 - UV light alone breaks chemical bonds in the nucleic acids of pathogens
- 2. UV light + riboflavin: irreversible inactivation
 - Riboflavin molecules form complexes with nucleic acids
 - UV light from the Mirasol Illuminator activates the riboflavin molecule in the complex
 - Photoactivated riboflavin induces a chemical alteration to the functional groups (such as guanine bases) of nucleic acids making pathogens unable to replicate

The Mirasol PRT Process for Platelets & FFP

* Illumination time depends on product volume

Slide from CARIDIAN

Mi	rasol Produ	ct &	Process Specif	ica	tions
(Plasr pl	Gen 1 na-based ocess		Gen 2 Plasma-based process		Gen 2 PAS-compatible process
Source product sp	pecifications				
Volume	170 – 360 ml		90 – 360 ml		90 – 360 ml
Concentration	1.18 – 2.1 x 10 ⁶ /μl		0.8 – 2.1 x 10⁰/µl		2.11 – 3.4 x 10⁰/µl
Yield	2.0 – 5.1 x 10 ¹¹		Not specified		Not specified
Treatment window	1			_	
SDP	2 – 22 hrs post-collec		2 – 22 hrs post-collect		2 – 18 hrs post-collect
BCP	1 – 8 hrs post-pooling		0 – 8 hrs post-pooling		0 – 8 hrs post-pooling

Storage specifications (derived values shown between brackets)

PAS addition	N/A
Volume	(200 – 400 ml)
Concentration	(1.0 – 2.1 x 10º/µl)
Yield	(<5.1 x 10 ¹¹)
Max. shelf life	5 days

N/A
(170 – 400 ml)
(0.7 – 2.1 x 10 ⁶ /µl)
Split if >5.1 x 10 ¹¹
5 days

<2 hrs post-PRT – min 135 ml			
Split if >400 ml			
0.7 – 1.5 x 10 ⁶ /µl			
Split if >5.1 x 10 ¹¹			
(7days)			

Slide from CARIDIAN

Reduction of Active Pathogen Load	Typical Performance	References
Viruses (enveloped, non-enveloped; intracellular, extracellular)	~3–6 log	Ruane et al. 2004 Goodrich et al. 2006 Navigant data on file
Bacteria (Gram +, Gram –)	~2–5 log	Ruane et al. 2004 Goodrich et al. 2006
Parasites	>5 log	Cardo et al. 2006 Cardo et al. 2007 Rentas et al. 2006 Tonnetti et al. 2007

Inactivation of White Blood Cells	Typical Performance	References
White blood cell inactivation	>6 log	Fast et al. 2006a (in-vitro)
Cytokine production and expression	Prevented	Fast et al. 2006a (<i>in-vitro</i>)
Graft-versus-host disease	Prevented	Fast et al. 2006b (animal model)
Alloimmunization & transplant rejection	Prevented	Marschner et al. 2007 (AABB abstract) Asano et al. (animal study; in press)

TRANSFUSION 2006;46:731-740.

Sherrill J. Slichter, Thomas J. Raife, Kathryn Davis, Margaret Rheinschmidt, Donald H. Buchholz, Laurence Corash, and Maureen G. Conlan

TABLE 2. Paired cutaneous template bleeding times*						
Time point	Number	PCT†	Reference†	p Value‡		
Before transfusion	9	29.2 ± 1.6	28.7 ± 2.5			
1-2 hr after transfusion	10	19.3 ± 9.5	14.3 ± 6.5	0.25		
18-24 hr after transfusion	10	18.3 ± 9.3	18.7 ± 9.1	0.82		

* Normal bleeding time, less than 8 minutes.

† Mean (±SD) in minutes. For the bleeding times of more than 30 minutes, a value of 30 minutes was used to calculate the means.

‡ Testing for treatment difference by crossover analysis.

TRANSFUSION 2006;46:731-740.

Sherrill J. Slichter, Thomas J. Raife, Kathryn Davis, Margaret Rheinschmidt, Donald H. Buchholz, Laurence Corash, and Maureen G. Conlan

TABLE 3. PLT counts, PLT count increments, and PLT CCIs					
Variable	PCT*	Reference*	p Value†		
PLT count (mean ± SD × 10%/L)					
Before transfusion	13.2 ± 5.3 (29)	14.5 ± 6.3 (29)			
PLT count increment (mean \pm SD \times 10 ⁹ /L)					
1-2 hr after transfusion	41.9 ± 20.8 (28)	52.3 ± 18.3 (29)	0.007		
18-24 hr after transfusion	26.1 ± 16.5 (29)	35.2 ± 19.0 (29)	0.021		
PLT CCI (mean \pm SD \times 10 ³)					
1-2 hr after transfusion	10.4 ± 4.9 (28)	13.6 ± 4.3 (29)	<0.001		
18-24 hr after transfusion	6.6 ± 3.8 (29)	9.2 ± 4.9 (29)	0.01		

* The number of patients at each time point is indicated in parentheses.

† Crossover analysis t test for patients with paired data for PLT count increments at 1 to 2 hours (n = 25) and 18 to 24 hours (n = 26).

TRANSFUSION 2006;46:731-740.

Sherrill J. Slichter, Thomas J. Raife, Kathryn Davis, Margaret Rheinschmidt, Donald H. Buchholz, Laurence Corash, and Maureen G. Conlan

Transfusion sequence (number)	Interval (days) ± SD	p Value†
PCT followed by reference (17)	2.9 ± 1.0	
Reference followed by PCT (12)	3.4 ± 1.4	0.35
Any sequence		
Any PCT (25)	2.9 ± 1.2	
Any reference (22)	3.4 ± 1.3	0.18
 * Interval is time from study trans PLT transfusion, which could b reference) or a nonstudy transf not be assessed for 6 patients (not receive any subsequent PLT transfusion. † Interval between transfusions (fusion (PCT or reference of a study transfusion fusion. Transfusion inte (3 PCT and 3 reference T transfusions after the was compared by t tes	ce) to next (PCT or rval could e) who did first study st.

TRANSFUSION 2006;46:731-740.

Sherrill J. Slichter, Thomas J. Raife, Kathryn Davis, Margaret Rheinschmidt, Donald H. Buchholz, Laurence Corash, and Maureen G. Conlan

Variable	PCT (n = 29)	Reference (n = 29
Any bleeding		
Before transfusion	19 (66)	17 (59)
After transfusion	17 (59)	19 (66)
Improvement	8 (28)	7 (24)
Worsening	5 (17)	4 (14)
No change	16 (55)	18 (62)

Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction

TRANSFUSION 2005;45:1335-1341.

James P. AuBuchon, Louise Herschel, Jill Roger, Harry Taylor, Pamela Whitley, Junzhi Li, Rick Edrich, and Raymond P. Goodrich

Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction

TRANSFUSION 2005;45:1335-1341.

James P. AuBuchon, Louise Herschel, Jill Roger, Harry Taylor, Pamela Whitley, Junzhi Li, Rick Edrich, and Raymond P. Goodrich

	Control	Treated	p value
Radiolabel uptake efficiency (%)	64.2 ± 17.2	59.5 ± 21.2	>0.05
Recovery (%)	66.5 ± 13.4	50.0 ± 18.9	< 0.05
Survival (multiple hit, hr)	142 ± 26	104 ± 26	< 0.05

Ĩ		
Inactivation	gies	:
Pathogen	Technolo	
Conference:	About New	
Consensus (g Decisions	
lings of a (Makin	- 1-1-1-1
roceed		

Pavenski, Katerina Blajchman ĽĽ, Yulia Hannon, and Morris A Vpuc Jacob M. Pendergrast, Cserti, ž Christine Webert, цi Kathryn

ion Medicine Reviews, V	ol 22, No 1 (January), 20	08: pp 1-34
Table 2. Incremental Cos to Improve Transfusion S	t (US dollars) of Technolog	ies Designed
Adverse event	Technology solution	Incremental cost/U
IBCT or ABO mistransfusion	PPI technologies (bar coding, RFID), check-type	<\$20
Acute or delayed alloimmune hemolytic transfusion reactions	(second sample) policies Database unification, definitive genotyping	<\$10
TRALI Transfusion- transmitted infection,	HLA antibody screening Pathogen reduction technology	<\$2 >\$100
	ion Medicine Reviews, V Table 2. Incremental Cos to Improve Transfusion S Adverse event IBCT or ABO mistransfusion Acute or delayed alloimmune hemolytic transfusion reactions TRALI Transfusion- transmitted infection, bacterial or viral	ion Medicine Reviews, Vol 22, No 1 (January), 20Table 2. Incremental Cost (US dollars) of Technolog to Improve Transfusion SafetyAdverse eventTechnology solutionIBCT orPPI technologies (bar coding, RFID), check-typeABO mistransfusion(bar coding, RFID), check-typeAcute or delayed alloimmune hemolytic transfusion reactionsDatabase unification, definitive genotypingTRALI Transfusion- transmitted infection, bacterial or viralHLA antibody screening Pathogen reduction technology

Abbreviations: IBCT, incorrect blood component transfused; PPI, positive patient identification; RFID, radiofrequency identification; TRALI, transfusion-related acute lung injury; HLA, human leukocyte antigen.
Message 9

- Platelet transfusion may be followed by reactions/adverse events
- The effectiveness of platelet transfusion can be highly variable
- Recipient clinical conditions and concurrent drug administration can heavily impact on effectiveness

Infectious adverse consequences of platelet transfusions

Consequence	Cause	Prevention
AIDS	HIV infected donor	Donor screening and testingPathogen inactivation
Hepatitis	Hepatitis B and C virus infected donor	Donor screening and testingPathogen inactivation
CMV disease	CMV infected donor	 Donor testing Leucocyte-reduction Pathogen inactivation
Sepsis or septic shock	Contamination from the platelet donors skin or from an occult or asymptomatic donor bacteriemia	 Culture product 24 or more hours after collection Test for bacteria shortly before transfusion Pathogen inactivation

Cumulative Risks of Early Fresh Frozen Plasma, Cryoprecipitate and Platelet Transfusion in Europe

Rut Norda, MD, Elsa Tynell, MD, and Olof Åkerblom, MD, PhD J Trauma. 2006;60:S41–S45.

Table 2 Of the Potential Adverse Effects, the Following Events Were Reported From the Danish, French, and Quebec Hemovigilance System, Recalculated to a Rate per 10,000 Transfusions^{14,16,18}

Events per 10,000 Transfusions	Plasma	Platelet
Non-haemolytic transfusion reactions	0,22	0†
(urticaria, allergic and anaphylaxis symptom)	0,35Ŧ	1,04∓
	2,35§	5,42 [§]
Congestive heart failure/volume overload	0,1 [∓]	0,13 [∓]
	2,06§	4,82%
Sepsis due to inadvertent bacterial	0,02‡	0,28*
contamination		
	018	0,29 [‡]
		2,41%
Transfusion-related acute lung injury*	0,18 ^T	0,46 ^T
	08	1,81%
Posttransfusion purpura	0,04†	0
Viral transmission	0	0,03 [‡]
Severe anaphylaxis with Ig A deficiency and	0	0
anti IgA		
Transfusion-associated graft-versus host	0	0
disease		
Citrate toxicity	NR	NR
Transmission of other pathogens not tested	NR	NR
for or recognised		
Alloimmunisation against HLA-antigens	NR	NR

* Not differentiated in France 1997-1998.

[†] Reported from the Danish.

[‡] Reported from the French.

§ Reported from Quebec.

NR indicates not reported.

Cumulative Risks of Early Fresh Frozen Plasma, Cryoprecipitate and Platelet Transfusion in Europe

Rut Norda, MD, Elsa Tynell, MD, and Olof Åkerblom, MD, PhD J Trauma. 2006;60:S41–S45.

Table 3 Other Adverse Effects Reported in the Danish, French and Quebec Hemovigilance System, Recalculated to a Rate per 10,000 Transfusions^{14,16,18}

Events per 10,000 Transfusions	Plasma	Platelets	
Minor allergic reactions	16,2 [‡]	44,6‡	
Febrile non-hemolytic	5,3 [‡]	24,1‡	
transfusion reactions			
Allergic reactions, not further specified	2,6†	19,8†	
Immunological incompatibility	0,06 [†]	3,4 [†]	
	2,9‡	1,2 [‡]	
Incorrect blood component	0,15*	0*	
issued			
	0,84‡	2,0‡	
Acute hemolytical transfusion	0*	0*	
reaction			
Inefficient transfusion	0 [†]	1,4⁺	
Unknown	1,3†	12,9 [†]	
	0,88 [‡]	0,12‡	
Other reactions	0,31†	0,38†	
	0,90‡		
* Reported from the Danish.			

[†] Reported from the French.

[‡] Reported from Quebec.

Immunologic adverse consequences of platelet transfusions

Consequence	Cause	Prevention
Alloimmunization	Leucocytes in platelets	Leucocyte-reductionUV B irradiation
Febrile reactions	HLA antibodies in transfusion recipient and IL-1β and IL-6 in platelets	 Leukocyte-reduction
TRALI	Leucocyte antibodies, bioactive lipids, or CD40L in platelets	•Exclude donors with leucocyte antibodies
Anaphylaxis	Antibodies in patients reacting with IgA, haptoglobin, antibodies or other plasma antigens	IgA deficient platelet donorsWashed platelets
GVHD	Engraftment of donor leucocytes in an immunosupressed recipient	•Gamma irradiation of platelets (25 Gy)
Rh D alloimmunization	Transfusion of platelets from RhD-positive donors to RhD- negative recipients	 Administer Rh immune globulin within 48 hours of transfusion
Hemolysis	Anti-A and Anti-B in donor's plasma	•Exclude donors with high titers of anti-A or anti-B
Hypotension	Generation of bradykinin by the bedside filtration of platelets in a patient taking angiotensin- converting-enzyme (ACE) inhibitors	 Prestorage or in laboratory leucocyte reduction

Factors associated with decreased platelet transfusion effectiveness
Non-immune Factors Clinical factors Splenomegaly Infection Fever Bleeding Disseminated Intravascular Coagulation
Drugs Amphotericin Vancomycin Ciprofloxacin Heparin Patient Factors Male gender
Increased weight & height Previous pregnancies Prior transfusions Immune Factors
Antibodies HLA Platelet-specific Erythrocyte
Other Platelet Product Age Stroncek & Rebulla, 2000

Appendix

FACT-Th[©] additional concerns

Below is a list of statements that other people with your illness have said are important. By circling one (1) number per line, please indicate how true each statement has been for you *during the past 7 days*.

		Not at all	A little bit	Some- what	Quite a bit	Very much
An5	I have energy	0	1	2	3	4
An7	I am able to do my usual activities	0	1	2	3	4
Th1	I bleed easily	0	1	2	3	4
Th2	I bruise easily	0	1	2	3	4
Th3	I worry about problems with bruising or bleeding	0	1	2	3	4
Th5	I am bothered by nosebleeds	0	1	2	3	4
Th7	I am bothered by pinpoint bruising beneath my skin	0	1	2	3	4
Th8	I am bothered by blood in my urine or stool	0	1	2	3	4
Th10	I avoid or limit <i>physical</i> <i>activity</i> (because of concem with bleeding or bruising)	0	1	2	3	4
Th12	I am <i>frustrated</i> by not being able to do my usual activities	0	1	2	3	4
Th13	I worry that my treatment will be delayed (because of low blood counts)	0	1	2	3	4
The ite	ms below are excluded from	the 1	1-iten	n ThS		
H7	I feel fatigued	0	1	2	3	4
Th4	I worry about the possibility of serious bleeding	0	1	2	3	4
Th6	I am bothered by bleeding in my gums or mouth	0	1	2	3	4
Th9	I am inconvenienced by platelet transfusions	0	1	2	3	4
Th11	I avoid or limit <i>social ac- tivity</i> (because of concern with bleeding or bruising)	0	1	2	3	4
Th14	I worry that my treatment dose will be reduced (be- cause of low blood counts)	0	1	2	3	4
Th15	For women only: I am bothered by vaginal bleed- ing	0	1	2	3	4
-						

Measuring the concerns of cancer patients with low platelet counts: the Functional Assessment of Cancer Therapy– Thrombocytopenia (FACT-Th) questionnaire

> David Cella Jennifer L. Beaumont Kimberly A. Webster Jin-Shei Lai Linda Elting

Support Care Cancer DOI 10.1007/s00520-006-0102-1

Received: 1 December 2005 Accepted: 6 June 2006 © Springer-Verlag 2006

[©] Copyright 2005, David Cella, Ph.D.

Measuring the concerns of cancer patients with low platelet counts: the Functional Assessment of Cancer Therapy– Thrombocytopenia (FACT-Th) questionnaire

> David Cella Jennifer L. Beaumont Kimberly A. Webster Jin-Shei Lai Linda Elting

Support Care Cancer DOI 10.1007/s00520-006-0102-1

Received: 1 December 2005 Accepted: 6 June 2006 © Springer-Verlag 2006

Conclusion: The FACT-Th is a reliable and valid measure for assessing the impact of thrombocytopenia on patients' lives. It can distinguish cancer patients with and without thrombocytopenia and is responsive to increase in platelet count over time. The FACT-Th may therefore prove useful as a measure of self-reported symptoms and concerns related to thrombocytopenia in clinical trials evaluating new pharmacologic agents and/or platelet transfusion practice.

ORIGINAL PAPER

Feasibility and usefulness of self-assessment of bleeding in patients with haematological malignancies, and the association between platelet count and bleeding

S. J. Stanworth,¹ C. Dyer,¹ A. Casbard² & M. F. Murphy²

Appendix I Self-assessment bleeding form. Please refer to your information sheet. Since completing your assessment form yesterday have you experienced:

		YES	NO
Bleeding gums or lips			
more than 1 h of continuous bleeding \square or less than 1 h of continuous bleeding \square			
Nose bleeding			
more than 1 h of continuous bleeding \square or less than 1 h of continuous bleeding \square			
Blood shot eyes			
Any new vision impairment			
 Red spots or bruising on any part of your body that you can see 			
If yes, are there more spots than the day before?	yes 🗆 no 🗆		
Mild/moderate 🗆	Extensive 🗆		(see definitions)
 Any bruised, swollen and painful joints or muscles 			
 Bleeding from invasive sites (e.g. Hickman line) 			
 Bright red blood in vomit 			
Coughing up blood			
Visible blood in urine			
Abnormal vaginal bleeding	not applicable 🗆		
If yes, are you having to use more than two pads per day?	yes 🗆 no 🗆		
 Bright red blood in stool 			
Black, tarry stool			
 Bleeding episode other than described above 			
Please describe			

ORIGINAL PAPER

Vox Sanguinis (2006) 91, 63–69 © 2006 Blackwell Publishing DOI: 10.1111/j.1423-0410.2006.00785.x

Feasibility and usefulness of self-assessment of bleeding in patients with haematological malignancies, and the association between platelet count and bleeding

S. J. Stanworth,¹ C. Dyer,¹ A. Casbard² & M. F. Murphy²

Results Nineteen patients were included in the study. Four-hundred and ten days of thrombocytopenia were eligible for assessment of bleeds. Self-assessment was feasible, as defined by the total proportion of days on which self-assessment was completed (70%, 288 thrombocytopenic days). There was 86% agreement between bleeding data collected by self-assessment and by medical examination using a structured assessment form. Examples of discrepancies included the duration of petechiae/bruises and the reporting of minor bleeding. There was no evidence for an association between patients' morning platelet count and daily WHO bleeding grade. The incidences of WHO grade 1 and grade 2 bleeding on days with platelet counts $\leq 10 \times 10^9/l$, 11–20 \times 10⁹/l, and > 20 \times 10⁹/l were similar and did not reveal higher rates of bleeding at lower counts.

Message 10

 Stable hem/onc patients can be safely transfused for bleeding prophylaxis with a pre-transfusion platelet count trigger of 10,000 platelets per microliter TABLE 1. FEATURES OF THE TRIAL.*

VARIABLE	Threshold, 10,000 Platelets/mm ³	Threshold, 20,000 Platelets/mm ³
Total no. randomized	144	132
No. whose study records were not received	9†	8‡
No. not evaluated for other reasons	0	4§
No. (%) who completed the follow-up	135 (94)	120(91)

*Three hundred twenty-nine patients with acute myeloid leukemia were admitted to participating hematology units during the study period. Of these, 53 were not randomized: 37 had secondary leukemia, 10 had received a transfusion before the diagnosis of acute myeloid leukemia, 4 did not meet the age criteria, and 2 declined to give consent.

†Disseminated intravascular coagulation developed on the day of admission in one patient who was admitted with fever (temperature, >38°C), which continued until death, and he died of cerebral hemorrhage on day 5, when his morning platelet count was 13,000 per cubic millimeter. The remaining eight patients were alive at discharge.

‡All eight patients were alive at disch arge.

§Two patients died within 24 hours after admission (one of cerebral hemorrhage and one of cardiac arrest), and two patients received a nonmy-eloablative course of chemotherapy.

TABLE 2. CHARACTERISTICS OF THE PATIENTS.

	Threshold, 10,000 Platelets/mm ³ (N = 135)	Threshold, 20,000 Platelets/mm ³ (N=120)
Male sex — %	53	52
Age — vr		
Median	51	49
Range	16 - 70	17-70
FAB classification of AML - no. of		
patients (%)*		
MÔ	7 (5.2)	5 (4.2)
M1	41 (30.4)	24 (20.0)
M2	28 (20.7)	37 (30.8)
M4	27 (20.0)	31 (25.8)
M5	21 (15.6)	17 (14.2)
M6	1 (0.7)	1 (0.8)
M7	1(0.7)	0
Undefined	9 (6.7)	5 (4.2)
Days of hospitalization		
Median	29	28
Range	3 - 64	4 - 54
Pretransfusion platelet count/mm ³		
Median	9000	14,000
Range	1000-89,000	0-64,000
No. of platelet transfusions/patient		
Mean ±SD	7.05 ± 4.56	8.97±5.17†
Median	6	8
Range	1-22	2-27
No. of red-cell units transfused/patient	0 57+5 18	0.07+4.59
Median	9.5/±5.18	$9.0/\pm4.58$
Banan	2 4 9	2 27
Range	3-40	2-21

*FAB denotes French-American-British, and AML acute myeloid leukemia.

 $\dagger P = 0.001$ for the difference between groups.

TABLE 3. CHARACTERISTICS OF PLATELET CONCENTRATES.

VARIABLE	Threshold, 10,000 Platelets/mm ³	Threshold, 20,000 Platelets/mm ³
Platelet concentrates (%)		
Selected by HLA type	4.8	4.6
Transfused within 2 days of	79.9	78.1
storage		
Prepared by apheresis	50.5	42.0
Processed to reduce the number	45.0	44.6
of leuko cytes		
Irradiated	40.0	38.7
Platelet count in aph eresis concen- trates (cells×10-9/unit)		
Median	280	290
Range	110 - 588	130-610
Platelet count in nonapheresis con- centrates (cells ×10-9/pool)		
Median	217	217
Range	140-555	140 - 505

P. Rebulla et al, NEJM 1997

TABLE 4. MAJOR END POINTS OF THE TRIAL.

END POINT	Threshold, 10,000 Platelets/mm ³ (N=135)	Threshold, 20,000 Platelets/mm ³ (N = 120)
Patients with major bleeding episodes — no. (%)	$29\ (21.5)$	$24 \ (20.0)$
1 episode	21 (15.6)	18 (15.0)
2 episodes	7 (5.2)	3 (2.5)
3 episodes	0	3 (2.5)
4 episodes	1 (0.7)	0
>4 episodes	0	0
Total days in hospital	4006	3330
Days with major bleeding episodes — no. (%)	123 (3.1)	65 (2.0)
Complete remission — no. of patients (%)	76 (56.3)	76 (63.3)
Death — no. of patients (%)	18 (13.3)	9 (7.5)
Infection	12	7
Cardiac failure	2	0
Acute renal failure	0	1
Trauma	1	0
Disseminated intravascular coagulation	1	0
Apoplectic stroke	0	1
Intestinal infarction	1	0
Cerebral hemorrhage	1	0

P. Rebulla et al, NEJM 1997

REASONABLY WELL (?) DFFI NFD TRIGGERS

Platelet Transfusion for Patients With Cancer: Clinical Practice Guidelines of the American Society of Clinical Oncology

By Charles A. Schiffer, Kenneth C. Anderson et al., JCO 2001;19:1519

Objective
Benefits/Harms/Cost
Outcomes
St

• Evidence

Values

- Recommendations
- Validation
- Sponsor: ASCO

PDF file: www.asco.org

Estimation of the Lower Limits of Manual and Automated Platelet Counting

EDGAR HANSELER, PHD,1 JORG FEHR, MD,2 AND HERBERT KELLER, MD, PHD1

Most evaluators of automated or manual methods for platelet counting focus on characteristics such as imprecision, linearity, and carry over. The limits of the analytical procedure are usually not assessed. The limits of the different techniques are neither discussed in the literature nor do manufacturers of analytical systems supply these data.

A new procedure is presented to assess the performance of the manual as well as the automated platelet count. This procedure allows, with defined statistical confidence (eg, 95%), the determination of (1) the limit of platelet detection (LD) at which signals of platelets can be discriminated from the system noise; (2) the lower limit of quantification (LLQ), at which a certain imprecision is not surpassed; and (3) the power of definition (PD) that defines the number of values that can be discriminated in a certain interval. For each value, the PD allows calculation of the two adjacent (lower and higher) values that are significantly ($P \ge 0.95$) different.

For the manual count, LD was found to be 1.6×10^9 plt/L and the LLQ 6.9×10^9 plt/L. For the automated count with the Technicon H1, LD was 4.3×10^9 plt/L and LLQ 13.8×10^9 plt/L (CV_{max} = 15%).

The PD in the range 20 to 100×10^9 plt/L is 8 for the automated and 7 for the manual count. (Key words: Platelet count; Measuring interval; Limit of detection; Lower limit of quantification; Power of definition) Am J Clin Pathol 1996; 105:782–787.

Hanseler et al, Am J Clin Pathol 1996

Difficulties in determining prophylactic transfusion thresholds of platelets in leukemia patients *Springer et al, Blood 1998; 92: 2183*

Fig. 1. Flow cytometric analysis of platelets and platelet-derived microparticles in a patients with acute myelogenous leukemia (A) and a normal individual (B) using anti-CD61 and anti-CD42b antibodies.

... the existence of platelet-derived microparticles (or membranes) that can improve hemostasis.

or % BLEEDI NG EVENTS in trials testing the 10,000 vs 20,000 platelet transfusion triggers

When things go wrong: platelet refractoriness

Refractoriness to platelet transfusion from random donors

- Alloimmune refractoriness: 5 vs 15% of hematology recipients of leuko-reduced vs non leukoreduced blood components
- Anti-HLA antibodies: 13% of cardiac surgery recipients of 1 transfusion

Platelet alloantibodies in transfused patients

Volker Kiefel, Claudia König, Hartmut Kroll, and Sentot Santoso

Transfusion 2001; 41:766-770

Diagnosis	Number
Systemic hematologic diseases (n = 187)	utilacadides. La com
Acute leukemia	43
Myeloproliferative syndromes	25
Myelodysplastic syndromes	36
Hodgkin's disease	10
Other lymphomas	73
Severe aplastic anemia	18
Solid tumors	14
Thrombocytopenia (various causes)	33
Total	252

Volker Kiefel et al. Transfusion 2001; 41:766-770

TABLE 2.	Frequencies of	platelet-specific and HLA
	class I an	tibodies

Antibody specificity	Female	Male	Total
HLA	56	37	93
HLA + HPA-5b	5	1018040	6
HPA-5b	4	0	4
HLA + HPA-5a	2	0	2
HPA-1a	194	0	1
HLA + HPA-1b	64 1 205,056	3	4
HLA + HPA-1b + HPA-5b	Ph1 of base	0	1
HLA + HPA-2b	0	1	1
HLA + HPA-1b + HPA-2b	0	dia transference	1
Total	70 (56.5%)	43 (33.6%)	113 (44.8%)

Kiefel et al, Transfusion 2001;41:766-770

TABLE 3. GP specificities of sera with broad reactivities against platelet GPs			
GP specificity	Number of sera		
llb/llla	tent noticentin 4 ne talete		
Ilb/IIIa + Ia/IIa	2		
IIb/IIIa + Ib/IX	oantibodies against the H		
Ilb/IIIa + Ia/IIa + Ib/IX	und anteren and anna lin at		
Total	10		

Volker Kiefel et al. Transfusion 2001; 41:766-770

Volker Kiefel et al. Transfusion 2001; 41:766-770

Provision of platelet support to refractory patients

HLA-matched donors

- large number (>5,000) of HLA typed donors
- difficult identification of compatible donors for patients with uncommon HLA types
- low CCI in 20-40% of cases

Cross-match compatible donors

- large number of platelet concentrates from random donors
- long screening time

Our blood supplier provides us with HLA-matched plateletpheresis products when we have a refractory HLA-alloimmunized patient. The HLA-matched product is sometimes in the blood center's inventory, but we usually have to wait two or three days to receive the first product. Also, occasionally the donation fails and we don't get any product. Would it be better if the blood center crossmatched plateletpheresis units for us?

AABB News 2000; 20, 4

Our experience

In 1999 we discontinued the use of HLA-matching and started a platelet crossmatching program for platelet recipients refractory to random donors.

Aim of the study Evaluation of pre- and post-transfusion platelets counts in consecutive refractory and HLA allo-immunized hematology patients transfused in 33 months after implementation of the new policy.
Elements of our semi-automated platelet cross-matching system

- Semi-automated instrument (originally ABS Precis → since 2003 Galileo, Immucor: sample processor, incubator, automated plate reader)
- I mmunoadherence assay (Capture-P I mmucor)

The semi-automated system

Test results

Selection of cross-match compatible platelets to refractory patients

- Random platelet supensions are obtained from supernatants of complete blood count (CBC) samples routinely collected (we collect approx 100 whole blood donations per day).
- > CBC samples are used fresh or stored overnight.
- Buffy-coats from cross-match negative donors are pooled to obtain platelet concentrates (BC-PC)

		Standard platelets		WBC-reduced platelets		
		n = 6 vol = 455	5057 $5 \pm 46ml$	n = 3144 vol = 408 ± 43 ml		
Year	Donations per pool (n)	Platelets (10 ⁹)	WBC (10 ⁶)	Platelets (10 ⁹)	WBC (10 ⁶)	
1999- 2000	6	347	163	336	0.35	
		± 54	± 116	± 52	± 0.27	
2001	5	287	75	288	0.50	
		± 40	± 62	± 45	± 0.50	

	MEN	WOMEN
<pre># refractory patients (%)</pre>	13 (32-5)	27 (67-5)
Age (years, mean ± SD)	61±15	56±15
<pre># of days from 1st transfusion to detection of refractoriness (mean ± SD)</pre>	219±180	119±187
# of patients that died during the study (%)	8 (61-5)	10 (37-0)
Pretransfusion platelet counts (10 ⁹ /I) of last three random donor platelet transfusions	4•9 ± 2•7 (<i>n</i> = 39)	4•6 ± 3•5 (<i>n</i> = 81)
1 h post-transfusion platelet counts (10 ⁹ /l) of last three random donor platelet transfusions	5.3 ± 4.0 (<i>n</i> = 7)	9-5 ± 9-3 (<i>n</i> = 22)
24 h post-transfusion platelet counts (10 ⁹ /l) of last three random donor platelet transfusions	4-7 ± 2-8 (<i>n</i> = 18)	4-3 ± 3-6 (<i>n</i> = 52)

No. of blood components transfused before and after detection of refractoriness (DR)

	Before DR		After DR		
Blood component	Standard (%)	WBC-reduced (%)	Standard (%)	WBC-reduced (%)	
RBCs	553	205	54	315	
	(31.8)	(11.8)	(5.5)	(32.3)	
Platelets	681	300	36	569	
	(39.2)	(17.2)	(3.7)	(58.4)	
Total	1234	505	90	884	
	(71.0)	(29.0)	(9.3)	(90.7)	

Pre-and post-transfusion platelet counts (median, 25th and 75th percentiles) in 36 refractory patients (April 1999 - September 2001)

Pre-and post-transfusion platelet counts (median, 25th and 75th percentiles) in 36 refractory patients (April 1999 - September 2001)

Effective transfusions in refractory patients (April 1999 - September 2001)

Patients with detrimental factors# of PLT transfusions= 301# of transfusions with 1 h post-PLT counts= 190 (63.1%)# of 1 h post-PLT counts $\geq 10,000 \ \mu L = 159 \ (83.7\%)$ $\Delta > 10,000 \ \mu L = 121 \ (63.7\%)$

Patients without detrimental factors# of PLT transfusions= 217# of transfusions with 1 h post-PLT counts= 150 (69.1%)# of 1 h post-PLT counts $\geq 10,000 \ \mu L = 140 \ (93.3\%)$ $\Delta > 10,000 \ \mu L = 111 \ (74\%)$

 Δ = (1 h PLT count post-transfusion) - (PLT count pre-transfusion)

Effective transfusions in refractory patients (April 1999 -September 2001)

1-h increment > 10,000
>10,000 1-h PLT
1h post-PLT
total transfusions

Technical time (minutes) to cross-match one patient serum with 90 platelet suspensions

Semi-automated system 160

Manual PSIFT Immunoadherence

557 225 No. of effective transfusions^(*) and no. of antibody detection kit wells used in refractory patients (1-18) to select cross-match neg platelets (April 1999 - September 2001)

Pt.	#	#effective/total	Pt.	#	#effective/total
	wells	transfusions		wells	transfusions
1	268	5/11	10	444	2/5
2	117	13/15	11	134	0/2
3	1,082	11/23	12	340	6/7
4	15	5/5	13	129	1/1
5	127	2/2	14	1,965	30/45
6	271	1/4	15	1,198	14/16
7	1,487	24/52	16	891	4/20
8	1,430	17/35	17	1,713	15/31
9	857	9/25	18	308	0/2

(*) ($\Delta \ge 10,000 \text{ PLTs}/\mu\text{L}$)

No. of effective transfusions^(*) and no. of antibody detection kit wells used in refractory patients (19-36) to select cross-match neg platelets (April 1999 - September 2001)

Pt.	#	#effective/total	Pt.	#	#effective/total
	wells	transfusions		wells	transfusions
19	970	5/7	28	1,112	14/37
20	258	2/2	29	3,634	15/47
21	693	2/10	30	889	3/7
22	429	3/6	31	1,505	9/17
23	786	2/21	32	654	9/11
24	287	0/2	33	870	2/15
25	70	2/2	34	154	2/2
26	268	0/4	35	524	0/7
27	1,020	2/14	36	246	1/6

(*) ($\Delta \ge 10,000 \text{ PLTs/}\mu\text{L}$)

Reagent cost of platelet crossmatch in 40 refractory patients (April 1999 - December 2001)

 Total cost of wells used for the refractory patients: US\$105,530

• Total # of 'effective' transfusions ($\Delta \ge 10,000$ PLTs/ μ L): 236/348 evaluable at 1 h

Plastic well cost per 'effective' transfusion: US\$ 447

Conclusions

The platelet cross-matching program was able to select effective platelets in two thirds of 569 transfusions given to 40 consecutive refractory patients during 33 months of study

DO NOT TRANSFUSE

When bleeding prophylaxis is not recommended (ASCO guidelines)

- Severe thrombocytopenia in myelodysplasia and aplastic anemia
 - ' ... many of these patients can be observed without prophylactic transfusions ...'
- Refractory patients for whom matched platelets are not available
 - ... the Panel recommends that such patients be transfused only for hemorrhagic events.'
- Thrombotic thrombocytopenic purpura
 - ' ... risks of precipitating thromboses.'

The trigger is only one part of the gun

Prophylactic platelet transfusion for haemorrhage after chemotherapy and stem cell transplantation (Review)

By Stanworth SJ, Hyde C, Heddle N, Rebulla P, Brunskill S, Murphy MF The Cochrane Library 2004, issue 4, Wiley & Sons

 There is no reason to change current practice but uncertainty about the practice of prophylactic [platelet] transfusion therapy should be recognised

Art no. CD004269.pub2

Key factors for effective platelet support in oncology and hematology

- Platelet concentrates of good quality from carefully selected blood donors
- Patient monitoring and laboratory evaluation (signs of hemorrhage and anti-HLA antibody detection)
- Prompt treatment of refractoriness