

The Evolving Role of MeCP2 in Rett Syndrome and Autism

Janine LaSalle, Ph.D Medical Microbiology and Immunology Rowe Program in Human Genetics UC Davis School of Medicine

Epigenetics and Autism What's the connection?

Autism

- Complex developmental disorder that usually appears 1-3 yr
 Deficits in social interaction and
- communication
- Repetitive stereotyped behavior and abnormal preoccupations
- Complex genetic etiology influenced by environmental factors

Rett Syndrome (RTT)

- RTT is the only one of the five Pervasive Developmental Disorders with a known genetic cause
- X-linked dominant, ~80%
 MECP2 mutation
- Neurodevelopmental regression around 6 to 18 months of age
- Mental retardation, ataxia, loss of purposeful hand movements, loss of vocalization skills, seizures

Angelman and Prader-willi syndromes

Imprinted disorders caused by 15q11-13 deletions or deficiency

AS: Maternal 15q11-13 deletion, paternal disomy, maternal UBE3A mutation, imprinting defects

PWS: Paternal 15q11-13 deletion, maternal disomy, imprinting defects QuickTime™ and a F (Uncompressed) decompresso are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

15q duplication syndrome isodicentric chromosome 15

- Cytogenetic abnormality of proximal 15q
 - interstitial duplication or idic 15
- Hypotonia, small stature
- Autistic features, anxiety, seizures
- Defects in sensory processing, language, and attention

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

idic 15

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

interstitial duplication

Overlap between autism, Rett and 15q11-13 syndromes

Phenotypic overlap

- stereotypic behaviors
- language impairments
- seizures (RTT, AS, 20-30% autism)
- delayed postnatal onset, regression (RTT and autism)
- mental retardation (RTT, AS, ~80% autism)
- sleep abnormalities

Evidence for genetic overlap

- MECP2 mutations in rare cases of autism
- *MECP2* mutations in rare cases with AS phenotype
- 15q11-13 maternal duplications in 1-3% of autism
- 15q11-13 rearrangements in 3 RTT cases
- linkage to 15q11-13 loci in autism families

Evidence for epigenetic overlap between autism, RTT, and 15q

- MeCP2 expression is significantly reduced in 79% of autism post-mortem brain samples
- Methylation of the *MECP2* promoter correlates with reduced expression in male autism brain samples
- GABRB3 expression (15q11-13) is significantly reduced in 56% of autism post-mortem brain samples
- Biallelic expression levels of GABRB3 are epigenetically dysregulated in Rett and autism postmortem brain
- Homologous pairing of 15q11-13 in mature neurons is deficient in RTT, autism, and AS

Ravi Nagarajan GGG student

Amber Hogart GGG student

Karen Thatcher GGG student

Methyl CpG Binding Protein 2

⁽Bird and Wolffe, Cell 1999)

- Binds methylated CpG dinucleotides
- Transcriptional repressor
- Xq28 (X chromosome inactivation)
- Complex developmental regulation

MeCP2 is a marker for mature neurons in the post-natal mammalian brain

Sytox Green Anti-MeCP2

The majority of MeCP2 bound promoters are on expressed genes

Yasui et al, PNAS, 2007

MeCP2 is bound to promoters of highly expressed genes

Yasui et al, PNAS, 2007

Highly methylated promoters are not bound by MeCP2

Example: MeDIP + MeCP2 and Pol2 ChIP at HOXA locus

More examples from Nimblegen promoter arrays for MeDIP, MeCP2, and Pol2

QuickTime™ and a decompressor are needed to see this picture.

POU5F1 (OCT4)

QuickTime™ and a decompressor are needed to see this picture.

GAPDH

NOL1

CHD4

Micrococcal nuclease fractionation of chromatin shows MeCP2 primarily in active fraction

QuickTime™ and a decompressor are needed to see this picture.

Western blot

DNA dot-blot

QuickTime™ and a decompressor are needed to see this picture. QuickTime™ and a decompressor are needed to see this picture.

Mike Gonzales, unpublished

MeCP2 localizes to both inert nuclear heterochromatin as well as nonheterochromatic regions

Sub-nuclear localization patterns of MeCP2 are consistent with dual functions in repression and activation

The majority of MeCP2 binding sites are intergenic or intronic

Yasui et al, PNAS, 2007

ChIP-chip analysis of established MeCP2 target genes

MeCP2 ChIP-chip analysis of imprinted region 15q11-13

Yasui et al, PNAS, 2007

MeCP2 target genes at closer examination

Active genes that MeCP2 represses through intergenic sites

JUNB ID1

Active genes that MeCP2 activates through intronic enhancers

EGR2 GABRB3

ChIP-chip analysis of 19p13.2 and JUNB

Yasui et al, PNAS, 2007

Methylation of upstream binding site for ID1 with unmethylated promoter

S. Peddada, unpublished

Reciprocal regulation of MECP2 and EGR2 intronic enhancer

QuickTime™ and a decompressor are needed to see this picture.

Quick I ime ™ and a decompressor are needed to see this picture.

Swanberg et al, 2009

15q11-13 GABA_A receptor subunit *GABRB3* has MeCP2 in intronic enhancer for homologous pairing and biallelic expression

QuickTime™ and a decompressor are needed to see this picture.

MeCP2 intronic binding predicted to act as a pairing factor for optimal maternal expression

QuickTime[™] and a decompressor are needed to see this picture.

Hogart et al, HMG, 2007

"Dimmer switch" model of MeCP2 as long range modulator of gene expression

Modulator rather than silencer

Future goals for improved understanding of MeCP2

- Characterize and develop reagents for investigating all MeCP2 post-translational modifications
- Characterize MeCP2 alternative isoforms, particularly MeCP2e1 in brain
- Genome-wide ChIP-seq in primary neurons
- Correlate MeCP2 binding sites with DNA methylation, histone marks, and gene expression genome-wide

Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size

Karen N. Leung¹, Roxanne O. Vallero¹, Amanda J. DuBose², James L. Resnick² and Janine M. LaSalle^{1,*}

¹Microbiology and Immunology and Rowe Program in Human Genetics, UC Davis School of Medicine, Davis, CA 95616, USA and ²Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32601, USA

Received June 10, 2009; Revised July 24, 2009; Accepted August 3, 2009

Genomic map of the 15q11-13 deletion/duplication disorders

Imprinted and neuronal regulation of 15q11-13

Chromatin decondensation of Snrpn to Ube3a is neuron-specific

Thymus Snrpn-Ub

Paternal signal ~5.1µm (average) 266.4µm/5.1µm = 52.2:1 packing ratio 1.3x more compact then a 30nm fiber

Maternal signal ~1.1µm (average) 266.4µm/1.1µm = 242.2:1 packing ratio 6x more compact then a 30nm fiber Paternal Snrpn-Ube3a allele decondensation is developmentally regulated and correlates to nucleolar enlargement during neuronal maturation

Transcription is required for paternal Snrpn-Ube3a chromatin decondensation

Mouse model 1 Paternal IC deletion **PWS model**

Chamberlain et al, 2004, HMG

PWS-IC^{Hs}/+

Mouse model 2 Human IC swap No maternal imprint

Johnstone et al, 2005, HMG

Transcriptional inhibition in mouse primary neurons

Neuron-specific chromatin decondensation is uniquely observed at imprinted snoRNA clusters and impacts nucleolar size

Neuronal FISH with probes from impri	inted, ncRNA, and
highly transcribed loci	

2'-0-methylation of rRNA

Nucleolar measurements of Purkinje neurons

Multiple copy number variants in multiple neurodevelopmental disorders map to 15q11-13

15q11-13 model for multiple genetic and epigenetic etiologies of autism spectrum disorders

Acknowledgements

LaSalle Lab Dag Yasui Mike Gonzales Diane Schroeder Karen Leung Malaika Singleton TramAhn Ta Roxanne Vallero Michelle Martin Rima Woods Haley Scoles Amy George Joanne Suarez **Keith Dunaway Tiobesta Beyene**

LaSalle Lab Alumni Rodney Samaco, Baylor Raman Nagarajan, UCSF Sailaja Peddada, UCSF Amber Hogart, NHGRI/NIH Katherine Patzel, NIH GPP

Collaborators, UCD Isaac Pessah Irva Hertz-Picciotto **Robert Berman** Mari Golub Robin Hansen Judy Van de Water **Peggy Farnham** Mark Bieda

Collaborators

Carolyn Schanen, Nemours, UDE Jim Resnick, University of Florida Amanda DuBose, UFL Wendy Robinson, UBC Paul Kostiniak, SUNY Buffalo Doug Gillard, SUNY Buffalo

Financial Support NIH, 1R01 HD41462, 1R01 HD48799 1R01ES015171 NSF predoctoral fellowship (KNL) **International Rett Syndrome Foundation Autism Speaks**

Brain Tissues Jane Pickett Autism Tissue Program **NICHD Brain and Tissue Bank**