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Bone Graft Materials
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The replacement of bone is a complex and demanding undertaking. A
brief description of bone’s biology and constitutional elements is helpful
in understanding the challenges that must be met when its replacement by
grafting is the goal. Bone formation occurs when osteoblasts secrete colla-
gen molecules and ground substance. The collagen molecules polymerize
to form collagen fibers. Calcium salts precipitate in the ground substance
along the collagen fibers to form osteoid. Osteoblasts become trapped in
the osteoid and then are called osteocytes.

Mature compact bone is composed of approximately 30% organic matrix
and 70% calcium salts. Ninety percent to 95% of the organic matrix is
collagen fibers, and the remainder is the gelatinous medium called ground
substance, which is composed of chondroitin sulfate and hyaluronic acid.
The collagen fibers are oriented along the lines of tensional force. The pre-
dominant crystalline salt, composed of calcium and phosphate, is hydroxy-
apatitedCA10 (P04)6 (OH) 2. Compact bone has hydroxyapatite crystals
lying adjacent to and bound to the collagen fibers. The collagen fibers pro-
vide tensile strength, and the hydroxyapatite crystals provide compressional
strength [1]. Duplication of these constitutional elements comprises some of
the grafting materials discussed later in this article.

Bone formation in grafting is characterized by three types of bone
growth: osteogenesis, osteoinduction, and osteoconduction. Osteogenesis
is the formation of new bone by osteoblasts derived from the graft material
itself. Osteoinduction is the ability of a material to induce the formation of
osteoblasts from the surrounding tissue at the graft host site, which results in
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bone growth. Osteoconduction is the ability of a material to support the
growth of bone over a surface.

Although not directly responsible for bone formation, an additional char-
acteristic, osteointegration, which is the ability to chemically bind to the sur-
rounding bone, is desirable to aid in the incorporation of the graft at the
host site.

Autogenous bone grafts

Autogenous bone grafts, also called autografts, are bone grafts transferred
from one site to another site within the same individual. These grafts are the
gold standard to which all other grafting materials are compared because
they possess all of the previously mentioned characteristics. Because they
are from the host itself, there is also an absence of antigenicity.

Autogenous grafts can be cortical or cancellous or a combination of
both. Cancellous grafts have the ability to revascularize sooner because of
their spongy architecture. This revascularization begins at around the fifth
day [2]. Before revascularization, cellular survival in the graft depends on
nutrition and elimination of metabolic waste products through plasmatic
diffusion. Osteocytes within their lacunae seem to survive if they are within
0.3 mm of a perfusion surface [3]. Cortical grafts require considerable re-
sorption by osteoclastic activity before osteoblastic bone formation. This
process is called ‘‘creeping substitution’’ and can produce areas of necrotic
bone that persist indefinitely [4].

As a result of the differing biology of cortical and cancellous bone, the
characteristics of a graft composed of each type differ. A cortical graft is
strong initially but weakens overtime before regaining strength. There also
may be a loss of dimension as a result of a resorption process unless phys-
iologic stress stimulation is producing bone reorganization. Dynamic load-
ing has been shown to be critical for the preservation and increase of bone
mass in vivo and, on a cellular level, for modulation of osteoblastic and
osteoclastic activity [5,6]. Cortical grafts have been shown to be 40% to
50% weaker than normal bone from 6 weeks to 6 months after transplanta-
tion [2]. Cancellous grafts tend to be weak initially because of their open ar-
chitecture but continually gain in strength. Physiologic stress stimulation is
necessary for continued dimensional and strength stability.

The disadvantages of autogenous grafts are the amount of available graft
material and the morbidity associated with their harvest. These disadvan-
tages have led to the development of myriad grafting materials that can
be classified into the following categories:

Allografts, also called allogenic, homologous, or homografts, are com-
posed of materials taken from another individual of the same species.

Xenografts, also known as heterografts or xenogenic grafts, are materials
taken from another species.
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Alloplastic grafts, or synthetic grafts, are artificial or manufactured ma-
terials and can be subdivided based on their origin and chemical
composition.

There are many and varied combinations of these materials (see list). This
article examines each class of material based on some of the studies in each
of the following categories: safety, animal research, periodontal and maxil-
lofacial applications, skeletal grafting, and attempt to qualify the efficacy of
each class of material. The article also examines some of the research being
done in ‘‘tissue engineering’’ to get a sense of the future of bone grafting.

Allografts

Allografts are cadaveric in origin. This type of grafting material is attrac-
tive because it closely matches the recipient in constitutional elements and
architecture and is theoretically available in unlimited quality. The funda-
mental problems of this grafting material are antigenicity and the potential
for transmission of disease.

Although allografts are treated in various ways, the real and perceived
risk of disease transmission still exists. It has been estimated that the risk
of HIV transmission is 1 in 1.6 million [7]. There has been one reported
case of hepatitis B and three cases of hepatitis C transmission associated
with the transplantation of allografts, with the latest case occurring in
1992 [8]. There have been two separate cases of septic arthritis from bone-
tendon-bone allografts from a common donor for reconstruction of anterior
cruciate ligaments [9]. The US Centers for Disease Control and Prevention
conducted an investigation that revealed at least 25 other cases of allograft-
related infection or illness [10].

As recently as March 9, 2006, there was a recall of allograft regenerative
products produced by manufacturers, including Tutogen Inc., Regeneration
Technologies Inc., Lifecell Corp., LostMountain Tissue Bank, and the Blood
and Tissue Center of Central Texas. This recall resulted from an investigation
of Biomedical Tissue Services, Ltd., a New Jersey company under scrutiny for
allegedly procuring tissue from funeral homes without proper documentation
[11]. Recalled tissues were tested for HIV, hepatitis B virus, and hepatitis C
virus, and as of March 2006, no contaminated allografts were identified
[12]. Despite these risks and in recognition of the advantages of bone grafting
using allograft material, bone grafting procedures expanded from approxi-
mately 10,000 cases in 1985 to more than 1 million in 2004 [5,13].

Allografts for maxillofacial and periodontal use generally come as dem-
ineralized freeze-dried bone allografts (DFDBA) or mineralized freeze-dried
bone allografts (FDBA) and in the form of particles, sheets, blocks, or entire
preformed bones. Some researchers propose that removal of the mineral
component allows greater expression of osteoinductive proteins [13–16];
however, allografts are predominately space-occupying osteoconductive
lattices or frameworks. The osteoinductive capability of these products is
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minimal because of the low concentration of bone growth proteins as a result
of the rigorous processes involved in the removal of potential antigenicity
and pathogenicity [17]. Piatell and colleagues [18] found that only the
DFDBA particles near the host bone were involved in the mineralization
process, whereas in FDBA even particles that were farthest from the host
bone were lined by osteoblasts actively secreting osteoid matrix and newly
formed bone. No osteoinduction was observed with FDBA or DFDBA.
There was an increased osteoconductive effect with FDBA.

Noumbissi and colleagues [19] compared mineralized cancellous allograft
material to a 1:1 combination of DFDBA and deproteinized mineralized bo-
vine bone in bilateral sinus grafts and concluded that resorption and
replacement by new bone occurredmore rapidly in the mineralized cancellous
allograft material but that both groups resulted in successful new bone forma-
tion. Two years after completion of the study there were no differences in os-
teointegration or stability of implants placed in either material. Schwartz and
colleagues [20] demonstrated that different bone bank preparation of
DFDBA, even from the same bank, varied considerably in their ability to in-
duce new bone formation and further concluded that the ability to induce
bone formation seems to depend on the donor age. Fucini and colleagues
[21] studied allograft particle size and found no statistically significant differ-
ence in bone fill in periodontal osseous defects between different particle sizes
of DFBA in humans. Glowacki [22] stated that we cannot conclude what the
performance of different lots of demineralized bone allografts will be in vivo
or in vitro and that test systems should be used as a measure of clinical perfor-
mance. The author also called for an osteoconductivity standard for products
that are to be released to market followed by clinical monitoring.

Animal studies have demonstrated (1) improved skeletal healing in mice
with the use of demineralized bone matrix þ hyaluronan [23], (2) better bone
fill in critical-sized defects in baboons using DFDBA combined with tendo-
nous collagen [24], (3) stable augmentation of the sinus floor with the use of
deproteinized bone particles in rabbits [25], (4) comparable mechanical load-
ing of implants with the use of homogeneous demineralized freeze-dried
bone in one-stage sinus lift procedures in sheep when compared with autog-
enous cancellous bone from the iliac crest [26], and (5) new bone formation
induced by active DFDBA and a dose-dependent increase in new bone area
that exceeded that induced by active DFDBA caused by the addition of
rhBMP-2 to inactive DFDBA [27].

Human studies and case reports of the use of these materials in the max-
illofacial region have yielded the following information:

Ridge augmentation and sinus grafting with freeze-dried bone allograft in
combination with platelet-rich plasma provides a therapeutic alterna-
tive for implant placement [28].

Mineralized, solvent dehydrated cancellous bone allografts were replaced
by newly formed bone significantly faster and in greater quantities in
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the maxillary sinus when compared with a composite of DFDBA plus
deproteinized bovine bone xenografts [19].

Allogenic bone block material is an effective alternative to autogenous
bone for implant site development [29].

Van Den Bergh and colleagues [30] reported the placement of 69 implants
in 30 sinuses grafted with DFDB without the loss of a single implant.

Minichetti and colleagues [31] studied the grafting of extraction sockets
with particulate mineralized bone allograft and concluded that it dem-
onstrated the formation or remodeling of bone and was clinically use-
ful in maintaining bone volume for implant placement after extraction.

Grogan and colleagues [32] reported that ‘‘allograft bone produced
reliable results with a satisfactory outcome’’ in posterior spinal fusion
for correction of idiopathic scoliosis.

Cammisa and colleagues [33] compared a demineralized bone gel to iliac
crest autogenous grafts, with each patient acting as his or her own con-
trol. They found bone fusion in 52% of the allograft side and 54% of
the autogenous side.

Summary
Although the results of these studies do not yield consistent results, they

demonstrate that allografts are osteoconductive and some are possibly
osteoinductive. Under the right circumstances and with proper patient
and site selection, they provide an acceptable material for grafting.

Xenografts

The disadvantages of allografts, including disease transmission, antige-
nicity, supply, and psychological aversion, have led to the exploration of
xenografts as an alternative grafting material. Xenografts are bovine in or-
igin and carry the theoretical risk of transmission of bovine spongiform en-
cephalopathy. Theoretical and experimental data, however, indicate that the
use of these materials does not carry a risk for transmitting bovine spongi-
form encephalopathy to humans [34]. Sogal and Tofe [35] applied the risk
assessment models of the German Federal Ministry of Health and the Phar-
maceutical Research and Manufacturers Association of America to a bovine
bone graft substitute and concluded that the risk of bovine spongiform en-
cephalopathy transmission was negligible. This was attributed to the strin-
gent protocols followed in sourcing and processing.

Animal studies have revealed the following information:

Bovine bone granules possess better osteoconductive potential than
bioglass crystals and hydroxyapatite when tested in New Zealand rab-
bits [36].

Xenogenic demineralized bone matrix was osteoconductive when im-
planted in rats [37].
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Bovine bone xenograft was to be more effective than particulate dentin
combined with plaster of Paris in forming new bone in calvarial
bone defects in rats [38].

Xenographic grafts undergo slower resorption than autogenous grafts
when placed in mandibular lateral surface defects in dogs [39].

Xenografts were essentially osteoconductive when examined in monkeys
[40].

Human use of xenografts has demonstrated the following findings:

Bovine bone mineral grafts, when used with barrier membranes, im-
proved clinical and radiographic parameters of deep intrabony pockets
[41].

Excellent integration of inorganic bovine material with newly formed
bone suggests that the material can be used for onlay grafting proce-
dures [42].

Biocompatibility and successful use occur in rebuilding atrophic alveolar
ridges when supported by a configured titanium mesh [43].

Success in sinus elevation procedures with or without implant placement
occurs when used alone or in combination with venous blood, platelet
rich plasma, and autogenous bone [44–54].

A unique regenerative product combines an anorganic bovine bone ma-
trix with Pepgen-15 (P-15), a synthetic peptide that mimics the cell-binding
domain of type 1 collagen [55,56]. Because collagen forms the scaffold for
cell attachmentdmigrationdand modulates cell differentiation and mor-
phogenesis by mediating the flux of chemical and mechanical stimuli and
because the P-15 peptide represents the cell-binding site of collagen, it
was hypothesized that materials coated with P-15 should act as an effective
substitute for autogenous bone grafts [57]. Bhatnagar and colleagues [56]
have demonstrated that this material produced enhanced bone formation
within a shorter time interval compared with a composite graft material
composed of anorganic bovine bone and DFDBA. Thompson and col-
leagues [58] compared a P-15 product to mineralized FDBA and coralline
hydroxyapatite in 13 maxillary extraction sockets and found that the
P-15–containing grafts produced the highest amount of vital bone. Human
osteoblasts have been shown to demonstrate the greatest proliferation and
differentiation in vitro when applied to a P-15–containing graft material as
compared with coralline hydroxyapatite, low temperature bovine hydroxy-
apatite, alpha tricalcium phosphate, and high-temperature bovine hydroxy-
apatite [59,60]. Similar results were demonstrated when P-15 was combined
with hydroxyapatite calcified from red algae [61].

Alloplasts

Alloplastic materials that have been investigated and manufactured
include hydroxyapatite, coral- and algae-derived hydroxyapatite, the
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calcium phosphates, calcium sulfate, collagen, and polymers. These syn-
thetic materials are inert with no or little osteoinductive activity, with the
exception of P-15, which is claimed to stimulate the differentiation of mes-
enchymal cells into osteoblasts [59–61].

The advantages of alloplastic grafts include an absence of antigenicity, no
potential for disease transmission, and unlimited supply. These materials
can be treated to be resorbable or nonresorbable, are provided in various
particle or pore sizes, are combined with various carriers to improve han-
dling characteristics, or are combined with bioactive proteins to provide
osteoinduction. Animal studies of these materials have demonstrated the
following findings:

Bone formation in monkey extraction sites and dog infrabony periodon-
tal defects with a hydroxyapatite/agarose gel [62,63].

Bone fill in rat calvarial defects, when hydroxyapatite was combined with
chitosan glutamate [64], cultured bone marrow osteoblasts [65], and re-
constituted collagen microspheres [66].

Mineralization rates for nanoparticle hydroxyapatite that were compara-
ble to autogenous bone in pig osseous defects [67].

Bone formation with porous hydroxyapatite in posterolateral lumbar
fusion in sheep [68].

Human studies revealed these findings:

Hydroxyapatite bone cement seems to hold great promise as a grafting
alloplastic material for sinus floor augmentations [69].

Hydroxyapatite can be used as a porous ceramic or as a paste/cement
bone graft material in humans in the hand [70], cranium [71], and tibia
[72,73].

Coral- and algae-derived hydroxyapatite
Because coral- and algae-derived hydroxyapatite has similar architecture

and similar mechanical properties to cancellous bone, much research has
gone into its use as a substitute graft material on its own or combined
with other substances [74]. Unlike bone, coral’s inorganic component is cal-
cium carbonate, which can be exchanged for phosphate to produce coralline
hydroxyapatite [75]. Like other synthetic materials, coral- and algae-derived
hydroxyapatite is not osteoinductive or osteogenic [76]. Its structure and
composition mimic natural bone, however [74]. Pore size and interconnec-
tivity and particle size have been shown to influence bone regeneration
and growth [77]. A minimum pore size of 100 nm is required for ingrowth
of connective tissue or osteoid, with an ideal pore size of approximately
100 to 135 nm [78,79].

The rate of a material’s resorption is a critical element in a graft’s success
as the material maintains a desired volume that should be replaced with
bone. Premature resorption of graft material may result in inadequate
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volume of the replacement [80,81]. This rate of resorption is influenced by
porosity and the composition of the graft material [82–84].

Simunek and colleagues [85] demonstrated that a material derived from
sea algae was gradually resorbed and replaced by newly formed bone. Ewers
and colleagues showed that marine-derived hydroxyapatite material com-
bined with 10% autogenous bone and plasma-rich protein produced compa-
rabledand in some cases betterdresults than autogenous grafts in sinus
augmentation procedures [81]. Similar results were obtained with the use
of this material in the foot and ankle [86] and iliac crest [87]. Less promising
results were produced when it was used for spinal fusion in rabbits [88] and
humans [89].

Bioactive glass
Bioactive glasses were introduced more than 30 years ago as bone substi-

tutes. The designation ‘‘bioactive’’ relates to their ability to bond to bone
and enhance bone-tissue formation. This is thought to be a result of the sim-
ilarity of surface composition and structure of the bioactive materials to the
mineral component of bone. This bioactivity depends on an intimate contact
with bone and is limited in nature [90]. Because of these characteristics, studies
have used this material as stand-alone bone grafting materials and scaffolds
for osteoinductive proteins and osteogenic cells. The rate and degree of re-
sorption are a function of architecture, particle size, and manufacturing
methods [83].

Research in animals has yielded conflicting results.

Moreira-Gonzalez and colleagues [91] concluded that ‘‘the use of bioglass
granules to repair large craniofacial defects cannot be advised.’’ This
statement was based the study of the repair of critical sized calvarial
defects in rabbits.

Griffin and colleagues [92] looked at metaphyseal defects in sheep and
found that defects filled with mixtures that contained 50% to 100%
bioactive glass contained less bone and more fibrous tissue than defects
filled with allograft, autograft, or allograft combined (!50%) with
bioglass.

Hall and colleagues [93] found no statistically significant difference be-
tween bioactive glass and no material in the repair of intrabony defects
around implants in the canine mandible and found that DFDBA pro-
duced better bone to implant contact and better bone height fill than
bioactive glass material.

Other studies have come to different conclusions:

Wheeler and colleagues [94] studied critical sized distal femoral cancel-
lous bone defects treated with bioactive glasses and found that all
grafted defects had more bone than unfilled controls.
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Cancian and colleagues [95] found total repair of surgically created de-
fects in monkey mandibles with intimate contact of the remaining par-
ticles of bioactive glass and newly formed bone at 180 days.

Research on the use of bioactive glass in spinal fusion in rabbits has led
others to conclude that it may have potential as a bone graft material
[96,97].

When this material was looked at for improved healing in extraction
sockets or sinus floor augmentation, either alone or in combination
with other grafting materials (DFDBA, autogenous bone), it was
found to be effective for bone regeneration [98–104].

Calcium phosphates and calcium sulfate
Calcium phosphate is the name given to a group of minerals that contain

calcium ions (Ca 2þ) combined with orthophosphates (PO4 3�). Tricalcium
phosphate Ca3 (PO4)2, which is also known as Whitlockite, occurs in alpha
and beta phases [105]. Hydroxyapatite, Ca10 (PO4) [6], (OH)2 is the princi-
ple mineral component of bone [1]. Calcium sulfate (CaS04) is better known
as plaster of Paris or gypsum and has been used as synthetic bone graft
material for more than 100 years [106].

Calcium sulfate
Human studies most recently have concentrated on the use of this mate-

rial in combination with other graft materials. Maragos and colleagues [107]
looked at its use combined with doxycycline and DFDBA in the treatment
of class II mandibular furcation defects in humans and found that either of
these additions significantly enhanced the clinical outcome than did calcium
sulfate alone. Borrelli and colleagues [108] concluded that medical grade cal-
cium sulfate increases the volume of graft material, facilitates bone forma-
tion, and is safe in the treatment of nonunions and fractures with osseous
defects. Other researchers also have demonstrated this material’s biocom-
patibility and osteoconduction [109,110]. Herron and colleagues [111] dem-
onstrated resorption of calcium phosphate and its replacement with bone in
rabbits.

Calcium phosphate
Blokhuis and colleagues [112] compared calcium phosphate with autoge-

nous bone grafts in 3-cm tibial segmental defects in sheep and concluded
that calcium phosphate does not provide an alternative to autogenous grafts
for this use. Linhart and colleagues [113] concluded that calcium phosphate
cements represent a good alternative to autogenous bone transplantation,
especially in elderly patients.

Tricalcium phosphate has been shown to have no adverse effect on cell
count, viability, and morphology and can provide a matrix that favors
limited cell proliferation in vitro [114]. Rabbit 1-cm diaphyseal segmental
defects treated with calcium sulfate combined with mesenchymal stem cells
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gave evidence of the use of this material as an alternative to autografts
[115]. When tricalcium phosphate was compared with inorganic bovine
bone in dog mandibular defects, tricalcium phosphate showed significantly
greater bone formation at 12 and 24 months and better resorption than
inorganic bovine bone [116]. Several studies in human sinus augmentation,
either alone or in combination with other substances, have demonstrated
its use as an effective bone grafting material [117–122]. Ultraporus beta
tricalcium phosphate used in 24 patients with orthopedic bone cavity de-
fects exhibited steady resorption and trabeculation with time, but incorpo-
ration was not complete at 1 year in large defects [123].

The future

Current avenues of research in molecular biology, progenitor cell use,
and biomimetic scaffolds hold promise for the future of bone replacements
by defining and employing the complex of stimuli and processes that can
result in bone formation. Postnatal progenitor cells have demonstrated
the capacity to differentiate into a multitude of cell types [124–126]. Mesen-
chymal stem cells can be harvested from bone marrow and demonstrate
extensive proliferative ability and the capacity to be guided into bone-form-
ing cell types [124]. Their availability is a limiting factor because their frac-
tion in marrow has been estimated to be as low as 1 in 27,000 cells
[127,128]. Adipose tissue–derived progenitor cells also have been investi-
gated [129–131]. They possess the advantages of availability and accessibil-
ity and have demonstrated capabilities similar to bone marrow–derived
cells. In vitro and in vivo studies have demonstrated their ability to form
bone [130–132].

The molecular processes of the multitude of factors in platelet rich plasma,
pro-osteogenic cytokines (BMP 2, 4, 7), and angiogenic factors leading to
osteoblastic bone formation are being elucidated [133,134]. The delivery or
support of these biochemicals or cellular elements depends on a carrier or
scaffolding system. Collagen, hyaluronic acid, calcium phosphate, chitosan,
and hydroxyapatite have been studied in the past [135–138]. Polymer chem-
istry has yielded polyglycolic acid, polylactic acid, polycaplactone, and com-
binations such as the copolymer polyglycolic acid–polylactic acid. Although
these polymers are biocompatible, their breakdown products are potentially
tissue damaging.

The goal is to configure these materials as competent carriers of the
biomolecular pro-osteogenics or as supportive scaffolds for cellular prolifer-
ation and bone formation [139–142]. One technique that is showing some
promise is three-dimensional printing technology. Three-dimensional com-
plex shapes or structures can be computer generated, constructed in
a three-dimensional printer, and then used as protein or cellular carriers
for custom implantable bone graft substitutes.
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Summary

A plethora of products on the market is designed to be used for the re-
placement or grafting of human bone. Each clinician must select the best
product for its particular advantages when used for a defined purpose in
patients. Careful review of the research underpinnings for each product is
essential when considering its use. Because the substance that is the equiv-
alent of the autogenous bone graft has yet to be developed, continued
research of materials and material combinations is helping us understand
the complex of interconnected elements that are essential for successful
grafting. As our understanding of these processes matures, there is great
hope for the development of the ‘‘ideal’’ substitute for the autogenous
bone graft.
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