0. INTRODUZIONE

Il presente lavoro illustra, sulla base d’un’analisi acustico-uditiva, gli aspetti temporale e timbrico del vocalismo d’una varietà amerindia, il guaraní paraguayo moderno (avañe’ê “lingua dell’uomo guarani”), parlato, oltre che nella maggior parte della Repubblica del Paraguay, nella provincia argentina di Corrientes e, per effetto dei recenti movimenti migratori, nelle province argentine di Misiones e Formosa e nella capitale argentina, Buenos Aires. La varietà descritta corrisponde a un guarani che potremmo definire “comune”, da tener distinto sia dai dialetti indigeni, o tribal, ancor oggi parlati in varie zone del territorio paraguaiano e nei paesi confinanti (Argentina, Bolivia e Brasile), sia dal cosiddetto guarani gesuitico, varietà storica, oggi estinta (per le questioni connesse con la classificazione dialettale, cfr. Meliá 1992).

Gli studi sperimentali sul vocalismo delle varietà iberiche e amerindie, se si eccettua lo spagnolo (cioè il castigliano), non appaiono molto sviluppati, a giudicare da quanto è stato pubblicato sinora; per certe varietà, non è esagerato dire che l’indagine si trova ancora nella fase embrionale, o limitata ad aspetti parziali; in alcuni casi, è addirittura assente. Se da una parte scarseggiano gli studi di carattere generale, in grado di fornire una visione d’insieme dei fenomeni e delle dinamiche del sistema vocalico, dall’altra, la comparabilità tra le varie descrizioni disponibili è inevitabilmente limitata dall’eterogeneità degli approcci descrittivi e dei metodi e delle metodologie utilizzate, oltre che delle finalità d’ogni singolo contributo.

0.1. Materiali e metodi: corpus, questionari, locutori, analisi

Il corpus è stato costituito, principalmente, a partire dal questionario appositamente approntato, tenendo presenti gli scopi dello studio. In un secondo momento, abbiamo deciso d’impiegare anche materiali di diversa provenienza, raccolti in precedenti inchieste sia da noi che da altri ricercatori, per scopi diversi da quelli che orientano il presente lavoro, sfruttando il fatto che la qualità delle registrazioni era sufficiente per un’analisi di tipo acustico; questo ci ha permesso d’ampliare il corpus da noi costituito. Il questionario è stato strutturato allo scopo di rispondere a esigenze di tipo stilistico, in quanto doveva indurre due tipi di modalità enunciativa: quella che denominiamo “lista di parole in isolamento” (d’ora in poi, L) e quella che viene comunemente definita “parlato-letto (continuo)” (di qui in avanti, PL). Quest’ultima rappresenta una modalità idealmente orientata verso il parlato spontaneo, pur non condividendone appieno le caratteristiche, dal momento che mantiene una certa tendenza all’iperarticolazione, tipica della modalità L, oltre che una velocità d’eloquio tendenzialmente più ridotta rispetto a quella del parlato naturale. Queste caratteristiche ci permettono di caratterizzare PL come una modalità intermedia tra L e il parlato spontaneo, che non abbiamo preso in considerazione in questo lavoro. Per l’elicitazione delle caratteristiche stilistiche appena descritte, si siamo serviti di testi di natura diversa. Per L, abbiamo utilizzato liste costituite da parole perlopiù dotate di significato; ci siamo serviti di logotomi solo quando si trattava d’analizzare le vocali in contesti consonantici che non fossero disponibili nel repertorio lessicale della lingua, come nel caso della posizione fonetica normale, ossia tra consonanti bilabiali. Per PL, invece, abbiamo utilizzato brani di breve estensione, che potevano presentarsi sottoforma d’enunciati o di brevi dialoghi da rappresentare. Laddove fossero disponibili, come già detto, ci siamo serviti anche di testi di diversa natura e provenienza, ma sempre riconducibili alla modalità PL, per esempio, registrazioni di testi di carattere etnografico (favole, racconti popolari, ecc.). Ogni punto del questionario è stato fatto leggere dalle tre alle cinque volte, in modo da ottenere un numero di repliche, per ciascuno dei tipi vocalici (definiti in base all’ambito accentuale e alla posizione), equivalente almeno al numero delle letture eseguite; se si considera che all’interno dello stesso punto del questionario lo stesso tipo vocalico può apparire molteplici volte, nello stesso contesto consonantico o in contesti diversi, il numero totale di repliche ottenute per vocale di fatto è molto superiore. I risultati dell’analisi, qui discorsi, provengono da cinque locutori, di cui tre di sesso maschile e due di sesso femminile, adulti, con un livello di scolarizzazione medio-alto. Ai fini dell’analisi, sono state escluse le vocali in sequenza (dittonghi e iati) e le porzioni analizzate sono state scelte, di norma, all’interno di parole piene (sostantivi, aggettivi, verbi e avverbi).

Il materiale sonoro è stato quindi analizzato con Praat 4.0.1, con campionatura a 22050 Hz. Le vocali sono state segmentate in base all’osservazione della forma d’onda e del corrispettivo spettrogramma e all’ascolto reiterato (per i problemi relativi alla segmentazione del segnale vocale, su cui

0.2. Rappresentazione uditiva e scale di misura

Per la visualizzazione delle qualità vocaliche, abbiamo optato per uno spazio definito in termini uditivo-percettivi, sostituendo il tradizionale piano cartesiano –con le frequenze, in Hz, della prima e della seconda formante (f1 e f2), rispettivamente in ordinata e in ascissa– con un diagramma le cui coordinate sono le differenze, in bark, tra f1 e f0 (= B1-B0) e tra f3 e f2 (= B3-B2). Che esista una correlazione fra dinamica articolatoria e caratteristiche acustiche è un fatto ormai assodato fin dai primi decenni della ricerca sperimentale, fin da quando, cioè, è stata messa in relazione l’altezza delle formanti con le dinamiche articolatorie, in particolare, di f1 col grado d’elevazione della lingua, e quindi col grado d’apertura della vocale (più grande è il valore di f1, più bassa, cioè aperta, è la vocale, e viceversa), e di f2 con la dimensione antero-posteriore, cioè col grado d’avanzamento/arretramento della lingua (più alto è il valore di f2, più anteriore è la vocale, e viceversa), mentre l’arrotondamento labiale si manifesta in un’ulteriore diminuzione di f2 rispetto alle vocali non-arrotondate. L’utilizzo di scale logaritmiche (secondo la nota scala di Koenig), al posto di quelle lineari, ha contribuito a stabilire correlati di tipo psicoacustico: la scala di Koenig, lineare fino a 1 kHz e poi logaritmica, applicata a f2, è in totale accordo con la classica legge psicoacustica di Fechner-Weber, secondo cui la grandezza della risposta psicologica a due diversi stimoli acustici tende a essere proporzionale al rapporto piuttosto che alla loro differenza. Spetta a Ladefoged (1975) e poi a Ladefoged & Maddieson (1990) il merito d’aver compiuto un ulteriore passo verso una rappresentazione uditivamente orientata delle qualità vocaliche, tramite l’introduzione del parametro f2-f1 al posto di f2, dal momento che, in tal modo, come osserva l’autore, s’ottiene una migliore correlazione col modo in cui vengono percepiti dall’orecchio le variazioni lungo la dimensione antero-posteriore. Test percettivi e indagini psicofisiche hanno definito meglio l’importanza uditiva delle diverse formanti e della distanza tra formanti adiacenti come correlato di specifiche caratteristiche fonetiche. L’introduzione di scale di misura diverse dallo hertz ha comportato notevoli vantaggi in questo senso, in particolare, la scala a bande critiche, la cui unità è il bark, ha avuto, e continua ad avere, ampia accettazione tra i fonetisti. La scala uditivo-percettiva in bark presenta, infatti, precisi correlati fisiologici nel sistema uditivo, dal momento che una banda critica corrisponde
a un intervallo relativamente costante di circa 1.3 mm lungo la membrana basilare, corrispondente a
sua volta a circa 1300 neuroni cocleari; la larghezza di banda critica aumenta con la frequenza, line-
amente fino a circa 500 Hz e poi approssimativamente in scala logaritmica. Per la trasformazione
delle frequenze da Hz in bark sono state proposte diverse formule matematiche, sostanzialmente
equivalenti; noi utilizziamo quella messa a punto da Zwicker-Terhardt (1980):

$$Bn = 13*\arctan(0.76*fn/1kHz) + 3.5*\arctan(fn/7.5kHz)^2$$

dove “fn” corrisponde al valore in Hz della formante considerata.

La scala a bande critiche s’è rivelata di grande utilità ed efficacia nella procedure di normalizza-
zione delle differenze inter-sesso, dovute alla diversa conformazione fisiologica dell’apparato fon-
torio nei due sessi, con ripercussioni sulle caratteristiche acustiche dei due tipi di voce (Klatt &
dimensioni della laringe e la minor lunghezza del condotto vocale nelle donne, determinano, rispet-
tivamente, una frequenza fondamentale (f0) più alta e una collocazione delle formanti più elevata
(di circa il 20%) rispetto agli uomini. Un contributo alla sistematizzazione d’idee e risultati ottenuti
nel corso degli ultimi decenni è stato dato, tra gli altri, da Syrdal (1985) e Syrdal & Gopal (1986),
che forniscono un modello di rappresentazione uditiva delle vocali angloamericane, sfruttando le
distanze uditive (in bark) tra le formanti (f2-f1, f3-f2, f4-f3, f4-f2) e tra f1 e f0. Quest’ultima
differenza, in particolare, sfruttando la covariazione negativa tra la frequenza della prima formante
e la frequenza fondamentale, si pone come un buon indice percettivo dell’altezza vocalica. D’altra
parte, gli esperimenti percettivi (cfr. per es. Traummüller 1981) avevano già evidenziato che valori
di f1-f0 (B1-B0) inferiori ai 3 bark sono caratteristici delle vocali alte (cioè chiuse), mentre valori
superiori ai 3 bark sono tipici delle vocali basse (cioè aperte). Similmente, lungo l’asse antero-
posteriore, la distanza critica di 3-3.5 bark determina una chiara divisione tra vocoidi anteriori e
vocoidi posteriori. Particolarmente efficace, nelle strategie di normalizzazione delle differenze
inter-sesso, s’è rivelato l’impiego delle differenze B1-B0 e B3-B2, come hanno dimostrato diversi
Anche se, una volta compiuta la procedura di normalizzazione, il grado di non-significatività delle
differenze tra vocali prodotte da soggetti di sesso diverso varia da vocale a vocale e da campione a
campione, partiamo dal presupposto che i risultati ottenuti in questo tipo di ricerche siano
applicabili anche a sistemi vocalici con una conformazione simile a quella dell’italiano, sia nel
numero delle unità fonemetiche in opposizione che nella loro distribuzione nel quadrilatero
articolatorio.
La proiezione dei valori ricavati dalle misurazioni viene effettuata su un piano avente come coordinate la differenza B1-B0 in ordinata e la differenza B3-B2 in ascissa. I punti proiettati corrispondono ai baricentri, ossia ai centri di gravità, delle aree d’esistenza di ciascuna vocale. Riteniamo che la visualizzazione di baricentri sia sufficiente per gli scopi del presente lavoro, che basa la descrizione delle caratteristiche timbriche e delle dinamiche articolatorie, una volta dimostrata la significatività delle differenze inter-categoria, sulla valutazione delle collocazioni relative dei vocoidi all’interno dello spazio uditivo-percettivo.

0.3. Vocali cardinali e rappresentazione fonetica

L’attribuzione d’un simbolo fonetico a ciascun punto individuato nello spazio uditivo percettivo è un’operazione indispensabile per un’adeguata definizione delle caratteristiche timbriche dei punti stessi, in altre parole, per una traduzione in coordinate articolatorie, secondo i parametri tradizionali (grado d’elevazione, d’avanzamento/arretramento e arrotondamento labiale), delle misure fisiche (in Hz) o uditivo-percettive (in bark). In tal senso, l’associazione punto (dello spazio uditivo o fisico)-simbolo fonetico viene a definire il sistema vocoidale d’una lingua.

![Fig.0.1. Quadrilateri vocalici e simboli canIPA.](image)

Il sistema di trascrizione che adottiamo è il canIPA, messo a punto da Canepari (2006², 2006³), ben più ricco e particolareggiato di quello IPA ufficiale (riprodotto in Fig.0.2), sul quale peraltro si basa. Come si vede confrontando la Fig.0.1 con la Fig.0.2, le differenze principali, oltre all’impiego d’un maggior numero di simboli, consistono in una suddivisione in sei livelli dell’asse dell’apertura e in cinque dell’asse antero-centrale, contro i rispettivamente quattro e tre del trapezio ufficiale, e nella reinterpretazione d’aluni dei simboli dell’IPA ufficiale, che vengono riclassificati secondo coordinate diverse; per esempio, i simboli per la serie delle vocali posteriori non-arrotondate vengono descritti da Canepari come posterocentrali, in quanto articolazioni non-arrotondate propria-
mente posteriori vengono giudicate fisiologicamente inattuabili; ancora, /a/ viene utilizzato per rappresentare l’articolazione bassa centrale, mentre a quella bassa anteriore viene assegnato il simbolo /æ/.

La messa a punto del primo sistema di vocali cardinali risale ai primi anni del secolo scorso, quando, nel 1917, D. Jones propose un modello ottenuto su analisi radiografiche (cfr. Fig.0.3), il cui scopo era migliorare il sistema di trascrizione, fissando le coordinate articolatorie che dovevano corrispondere a ogni simbolo, e permettere la confrontabilità tra sistemi vocalici di lingue diverse. Il modello elaborato da Jones è alla base del trapezio ufficiale dell’Associazione Fonetica Internazionale, che riproduciamo nella versione aggiornata al 1996 (Fig.0.2).

L’idea sottostante il concetto di “vocale cardinale” è quella di limite vocalico all’interno della cavità orale e, di conseguenza, di spazio vocalico compreso tra i limiti. Teoricamente, tutte le vocali di qualunque lingua devono essere posizionate o sui limiti vocalici stessi, estremi per definizione, o dentro lo spazio vocalico. Il problema, allora, è definire questo spazio e specificare una serie di punti di riferimento in modo indipendente da qualsiasi lingua particolare; tali punti
Il quadrilatero di riferimento che proponiamo in questa sede (Fig.0.6) è stato da noi elaborato nel tentativo di rispecchiare la reale conformazione articolatoria del quadrilatero idealmente tracciato dallo stesso punto del dorso della lingua coi suoi movimenti d’elevazione e d’avanzamento/arretramento. Concretamente, ci siamo ispirati a diversi modelli elaborati da diversi fonetisti in molti anni di sperimentazione. Oltre al già citato quadrilatero di Delattre et al., abbiamo fatto riferimento a quello, più realistico, di Catford (1988; cfr. Fig.0.5), giovandoci anche, in parte, d’alcune generalizzazioni che abbiamo potuto compiere sulla base dell’analisi spettrografica delle realizzazioni che lo stesso Canepari effettuò nel 1983 dei suoi vocoidi cardinali. A differenza di quanto s’è fatto tradizionalmente, preferiamo non dare valori assoluti per ciascun punto del nostro
quadrilatero. Preferiamo, infatti, considerare i vocoidi come aree –che potremmo definire, con terminologia acustica, le aree d’esistenza dei vocoidi cardinali (corrispondenti alle caselle del nostro quadrilatero e di quelli di Canepari)–, delimitabili in termini di valore massimo e minimo di f1 e f2. I valori riportati in Fig.0.6 sono quelli che consideriamo tipici di ciascun vocoide. Assegniamo a un determinato vocoide tutti i punti che ricadono all’interno dell’area corrispondente, specificando ne la posizione relativa coll’ausilio di diacritici speciali (\(\times\), \(\circ\), \(\times\), \(\circ\)) nel caso di cui la collocazione all’interno dell’area risulti particolarmente periferica.

Il nostro quadrilatero offre un duplice riferimento, basato sull’impiego di due scale diverse, una acustica, lineare, con le misure in Hz di f1 e f2 rispettivamente in ordinata e in ascissa, e l’altra percettiva, in bark, con le differenze B1-B0 in ordinata e B3-B2 in ascissa. È interessante osservare come la distanza critica di 3 bark (cfr.§ 0.2) divida nettamente in due parti pressoché uguali i due assi, classificando, da una parte, come “aperte” le vocali alte, semi-alte e medio-alte, e come “aperte” le medio-basse, le semi-basse e le basse, dall’altra, come “anteriori”, oltre alle vocali della serie propriamente anteriore, anche quelle anterocentrali, e come “posteriori” le vocali postero-centrali e, ovviamente, quelle propriamente posteriori. Le centrali costituirebbero una categoria ibrida, che può sfumare verso realizzazioni più o meno anteriorizzanti o posteriorizzanti. Si noti come, lungo l’asse dell’apertura, le vocali tendano a disporsi a intervalli sostanzialmente regolari, risultando significativamente separate da una distanza di circa 1 bark, ipotesi confermata anche dai risultati ottenuti per il guarani, in questa sede. Per osservazioni simili in lingue diverse, cfr. per esempio i risultati ottenuti da Flammia (1987-88) per l’italiano.
Per quanto riguarda la scala acustica, riteniamo che il confronto delle misurazioni in Hz, limitatamente alle coordinate grezze f1 e f2, possa continuare a essere considerato, tutto sommato, affidabile, e sufficiente, ai fini d’una classificazione articolatoria, e quindi dell’attribuzione dei simboli fonetici. Come hanno dimostrato diversi studi, volti a testare la maggiore o minore bontà di scale e parametri diversi, le percentuali di corretto riconoscimento si mantengono in linea di massima molto alte per entrambe le scale (Hz vs bark), il che significa che entrambe le scale sono in grado di separare correttamente le vocali, soprattutto quando si tratta di modalità enunciativa che favoriscono l’iperarticolazione, come L e, in minor misura, PL (nel senso che il parlato-letto ipoartica meno del parlato spontaneo; cfr. § 0.4.1).

Fig.0.5. Quadrilateri acustici delle vocali cardinali basati sulle realizzazioni di Catford.

Fig.0.6. Quadrilatero acustico dei vocoidi cardinali, con specificazione della doppia scala, acustica, in Hz, e percettiva, in bark. Sono state visualizzate solo le serie a cui appartengono i vocoidi riscontrati nel guarani.

0.4. Le variabili

I due aspetti del vocalismo, che costituiscono l’oggetto del presente lavoro, sono stati considerati in rapporto alle seguenti variabili: per l’aspetto temporale, modalità enunciativa, ambito accentuale e tipo sillabico; per l’aspetto timbrico, modalità enunciativa e ambito accentuale.

0.4.1. Modalità enunciativa e ambito accentuale

Alla luce di questi parametri è possibile spiegare i fenomeni di riduzione che si verificano, sia sul piano temporale che timbrico, in certe condizioni, ossia in modalità PL e in posizione nonaccentata. In particolare, sul piano timbrico sarà il caso di distinguere, seguendo Savy & Cutugno
(1997), tra due tipi di riduzione: quella dovuta a *ipoarticolazione*, strettamente condizionata dal livello d’accuratezza articolatoria e dunque dallo stile di parlato e quella dovuta agli effetti dell’acento sull’articolazione delle vocali, che i due autori definiscono *centralizzazione strutturale*. Mentre quest’ultima, per il fatto d’essere legata a caratteristiche strutturali (presenza vs assenza d’accento lessicale e di frase) è in certo qual modo universale, caratteristica d’ogni sistema vocalico, l’ipoarticolazione è legata, com’è evidente, alla variazione diafasicca, che determina vari livelli d’accuratezza lungo un *continuum* di stili diversi di parlato. Va subito chiarito che, in modalità PL, i fenomeni ipoarticolatori si manifestano con un’entità ovviamente minore a quella che normalmente s’osserva nel parlato spontaneo, dal momento che i fattori a cui è legata l’ipoarticolazione –per esempio, effetti coarticolatori, elevata velocità d’eloquio, tendenza al minimo sforzo– agiscono, nel parlato-letto, in modo meno consistente. L’ipoarticolazione e la centralizzazione strutturale hanno conseguenze simili, sia sul piano articolatorio, col mancato raggiungimento delle posizioni target, sia sul piano acustico, con una tendenza alla centralizzazione, che generalmente si traduce, sullo spettrogramma, nella diminuzione dei valori di f1 e, per f2, nella diminuzione dei valori in area anteriore e in un loro incremento in area posteriore. È evidente che i due fenomeni –ipoarticolazione e centralizzazione– possono interagire; per esempio, dobbiamo aspettarci che l’entità della centralizzazione sia maggiore, per effetto dell’ipoarticolazione, in modalità PL (e ancor più nel parlato spontaneo) che in modalità L.

Per quantificare l’entità della centralizzazione (termine che in questo contesto utilizziamo indistintamente anche per l’ipoarticolazione), abbiamo fatto riferimento alla nozione di *schwa* (o centroide), punto ideale di riferimento, definito come “the grand mean of all measures formant frequency of the vowel system” (la definizione è di Koopmans & van Beinum 1983:168) e calcolato come media dei valori medi (nel nostro caso, di B1-B0 e di B3-B2) di tutte le vocali all’interno d’un sistema omogeneo (vocalismo accentato vs vocalismo non-accentato, modalità PL vs modalità L). Abbiamo calcolato le distanze euclidee (*de*) dallo *schwa*, così definito, di ciascuna vocale in ciascun ambito accentuale e in ciascuna modalità enunciativa, ossia in L+ace, L-ace, PL+ace e PL-ace, utilizzando, a tal scopo, la seguente formula:

\[de = \{(f1 - f1_c)^2 + (f2 - f2_c)^2\}^{1/2} \]

dove f1 e f2 corrispondono ai valori medi (in bark) delle differenze B1-B0 e B3-B2 di ciascuna vocale, e f1_c e f2_c a quelli dello *schwa* (o centroide).

Infine, per ottenere una misura del grado di centralizzazione al variare delle condizioni accentuali e stilistiche, abbiamo ricavato l’indice di centralizzazione (*δ*), calcolato sottraendo i valori delle
distanze euclidean relati ai sistemi che s’ipotizza siano più esposti al fenomeno (e quindi con valori relativamente bassi) a quelli relati ai sistemi che s’ipotizza invece siano più resistenti (quindi con valori più alti). In funzione dell’ambito accentuale, avremo quindi L+acc – L-acc e PL+acc – PL-acc; in funzione della modalità enunciativa, invece, L+acc – PL+acc e L-acc – PL-acc. Solo valori superiori a zero indicano, ovviamente, centralizzazione. La significatività delle differenze tra sistemi periferici vs centralizzati è stata calcolata per mezzo d’un T-test, accettando come significativi valori di $p < 0.05$.

0.4.2. Tipo sillabico

Per tipo sillabico intendiamo la sonorità della consonante postvocalica (sonora vs non-sonora), sia essa tauto- o etero-sillabica.

1. VOCALISMO

1.1. Sistema vocalico del guarani

Il guarani ha due serie di fonemi vocalici, sei orali: /i, e, a, o, u, u/ e sei nasali: /i, ɛ, ɑ, ɒ, u, ŭ/ (Fig.1.1). La nasalità è distintiva solo in posizione accentata; in posizione non-accentata è fonetica, e s’espande in modo bidirezionale a tutti i segmenti sonori, a partire dalla sillaba nasale accentata. L’espansione è bloccata dalla presenza d’una sillaba accentata con nucleo vocalico orale. I risultati qui presentati si riferiscono al vocalismo orale; va detto comunque che l’analisi uditive non ha messo in evidenza nessuna differenza qualitativa tra le due serie di fonemi vocalici (cfr. anche il quadrilatero proposto da Walker 1999: 69).

![Fig.1.1. Fonemi vocalici del guarani, serie orale. Le collocazioni per la serie nasale sono le stesse.](image-url)
1.2. Aspetto temporale

1.2.1. Sonorità della C postvocalica

La Tab.1.1 mostra il comportamento delle durate vocaliche in rapporto alla sonorità della consonante postvocalica. Le maggiori durate relative si hanno davanti a consonante sonora, in entrambe le modalità enunciativa e in entrambi gli ambiti accentuali, con differenze del 26% in L+acc e in PL+acc, del 18% in L-acc e del 21% in PL-acc. Le differenze risultano significative in tutti i casi, come rivelano i risultati del T-test (p < 0.05). Il comportamento di ciascuna vocale è illustrato nelle Fig.1.2-7.

<table>
<thead>
<tr>
<th>+acc</th>
<th>C+son</th>
<th>C-son</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>PL</td>
</tr>
<tr>
<td>n. casi</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>min</td>
<td>104</td>
<td>59</td>
</tr>
<tr>
<td>max</td>
<td>215</td>
<td>198</td>
</tr>
<tr>
<td>media</td>
<td>148.5</td>
<td>118.8</td>
</tr>
<tr>
<td>DS</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>CV</td>
<td>0.216</td>
<td>0.336</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-acc</th>
<th>C+son</th>
<th>C-son</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>PL</td>
</tr>
<tr>
<td>n. casi</td>
<td>66</td>
<td>14</td>
</tr>
<tr>
<td>min</td>
<td>52</td>
<td>71</td>
</tr>
<tr>
<td>max</td>
<td>184</td>
<td>146</td>
</tr>
<tr>
<td>media</td>
<td>113.1</td>
<td>94.9</td>
</tr>
<tr>
<td>DS</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>CV</td>
<td>0.277</td>
<td>0.269</td>
</tr>
</tbody>
</table>

Tab.1.1. Dati generali in funzione della sonorità della consonante postvocalica.

Fig.1.2. Dati relativi a /a/
Fig. 1.3. Dati relativi a /e/.

Fig. 1.4. Dati relativi a /i/.

Fig. 1.5. Dati relativi a /o/.
1.3. Aspetto timbrico

1.3.1. Modalità enunciativa e accento

In Fig.1.8 vengono collocate nello spazio uditivo, sottoforma di punti, le realizzazioni corrispondenti alle sei vocali del guarani, in funzione della modalità enunciativa e dell’ambito accentuale. In modalità L, quasi tutte le vocali rivelano, in posizione non-accentata, una chiara tendenza alla centralizzazione lungo l’asse antero-posteriore; per /a/ si ha anche avanzamento. Si noti la prossimità di /u/ alla vocale alta anteriore in modalità PL. In realtà, i pochi dati utilizzati per caratterizzare la modalità PL invitano a considerare con cautela l’apparente anomalia, dal momento che un campione più numeroso potrebbe ristabilire un valore di B3-B2 più prossimo ai 3 bark, corrispondenti alla distanza critica che separa le vocali anteriori dalle posteriori (cfr. § 0.2). Va comunque detto che tale anomalia conferma in parte anche i risultati dell’analisi uditiva, che colloca la posterocentrale alta foneticamente a metà strada tra una realizzazione postero-centrale e una di tipo centrale. In modalità PL, s’osservano le stesse tendenze rilevate per L, con una globale tendenza alla centralizzazione,
tranne per le alte posteriore e posterozentrale, in cui, in posizione accentata, si hanno realizzazioni più periferiche, rispettivamente più posteriore e più anteriore, rispetto alla modalità L. Di conseguenza, le realizzazioni in modalità PL occupano uno spazio leggermente più ristretto, particolarmente lungo l’asse dell’apertura, rispetto a quello utilizzato da L. In posizione accentata, per esempio, la distanza tra i valori di B1-B0 di /i/, /u/ e quello di /a/ è infatti di circa 4 bark per L e di 3 per PL. In posizione non-accentata, invece, lo scarto è minore: 3.3 bark per L e 3 per PL. Come risulta dalla Fig.1.8, la notevole vicinanza che si ha, in modalità PL, sia lungo l’asse dell’apertura che lungo quello antero-posteriore, tra le vocali anteriori e la posterozentrale alta accentata, potrebbe far pensare a una sovrapposizione tra le rispettive realizzazioni, con conseguente neutralizzazione sia sul piano uditorio che su quello del sistema fonologico. Per verificare ciò, abbiamo testato la significatività delle differenze tra le tre vocali lungo entrambi gli assi. Il T-test ha evidenziato, come aveva d’altronde confermato l’analisi uditoriale, che le differenze sono significative in tutti i casi.

![Fig.1.8. Proiezione dei valori mediani di B1-B0 e B3-B2 delle vocali del guarani, in funzione della modalità enunciativa e dell’ambito accentuale.](image_url)

<table>
<thead>
<tr>
<th>B1-B0</th>
<th>n. casi</th>
<th>min</th>
<th>max</th>
<th>mediana</th>
<th>DS</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a/</td>
<td>L +acc</td>
<td>37</td>
<td>2.64</td>
<td>7.05</td>
<td>5.27</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>9</td>
<td>3.62</td>
<td>5.52</td>
<td>4.35</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>L -acc</td>
<td>35</td>
<td>3.47</td>
<td>6.92</td>
<td>4.98</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>PL -acc</td>
<td>9</td>
<td>3.40</td>
<td>5.07</td>
<td>4.40</td>
<td>0.60</td>
</tr>
<tr>
<td>/e/</td>
<td>L +acc</td>
<td>32</td>
<td>0.96</td>
<td>3.86</td>
<td>2.82</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>7</td>
<td>2.84</td>
<td>3.00</td>
<td>2.03</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>L -acc</td>
<td>29</td>
<td>1.45</td>
<td>3.64</td>
<td>2.27</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>PL -acc</td>
<td>7</td>
<td>1.74</td>
<td>2.95</td>
<td>2.65</td>
<td>0.48</td>
</tr>
<tr>
<td>/i/</td>
<td>L +acc</td>
<td>22</td>
<td>0.17</td>
<td>2.54</td>
<td>1.40</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>4</td>
<td>1.19</td>
<td>1.27</td>
<td>1.19</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>L -acc</td>
<td>20</td>
<td>0.74</td>
<td>3.14</td>
<td>1.50</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>PL -acc</td>
<td>6</td>
<td>0.10</td>
<td>1.49</td>
<td>1.31</td>
<td>0.58</td>
</tr>
<tr>
<td>/o/</td>
<td>L +acc</td>
<td>22</td>
<td>1.69</td>
<td>4.00</td>
<td>2.66</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>7</td>
<td>2.37</td>
<td>2.85</td>
<td>2.37</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>L -acc</td>
<td>27</td>
<td>1.83</td>
<td>3.77</td>
<td>2.92</td>
<td>0.57</td>
</tr>
<tr>
<td>/u/</td>
<td>PL–acc</td>
<td>7</td>
<td>1.83</td>
<td>3.20</td>
<td>2.59</td>
<td>0.47</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>L +acc</td>
<td>22</td>
<td>0.85</td>
<td>2.56</td>
<td>1.51</td>
<td>0.35</td>
<td>0.229</td>
</tr>
<tr>
<td>PL +acc</td>
<td>8</td>
<td>1.60</td>
<td>1.99</td>
<td>1.58</td>
<td>0.27</td>
<td>0.173</td>
</tr>
<tr>
<td>L –acc</td>
<td>31</td>
<td>1.25</td>
<td>2.54</td>
<td>1.82</td>
<td>0.38</td>
<td>0.208</td>
</tr>
<tr>
<td>PL –acc</td>
<td>6</td>
<td>1.62</td>
<td>1.92</td>
<td>1.70</td>
<td>0.14</td>
<td>0.080</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/u/</th>
<th>L +acc</th>
<th>26</th>
<th>1.34</th>
<th>2.08</th>
<th>1.65</th>
<th>0.22</th>
<th>0.131</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL +acc</td>
<td>10</td>
<td>0.47</td>
<td>1.54</td>
<td>1.50</td>
<td>0.55</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>L –acc</td>
<td>20</td>
<td>1.35</td>
<td>2.87</td>
<td>1.75</td>
<td>0.34</td>
<td>0.197</td>
<td></td>
</tr>
<tr>
<td>PL –acc</td>
<td>8</td>
<td>1.49</td>
<td>1.93</td>
<td>1.68</td>
<td>0.18</td>
<td>0.109</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B3-B2</th>
<th>n. casi</th>
<th>min</th>
<th>max</th>
<th>mediana</th>
<th>DS</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a/</td>
<td>L +acc</td>
<td>37</td>
<td>2.50</td>
<td>5.20</td>
<td>3.54</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>9</td>
<td>3.18</td>
<td>4.38</td>
<td>4.02</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>L –acc</td>
<td>35</td>
<td>2.14</td>
<td>4.84</td>
<td>3.24</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>PL –acc</td>
<td>9</td>
<td>3.03</td>
<td>4.77</td>
<td>3.74</td>
<td>0.55</td>
</tr>
<tr>
<td>/e/</td>
<td>L +acc</td>
<td>32</td>
<td>0.76</td>
<td>2.49</td>
<td>1.23</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>7</td>
<td>1.15</td>
<td>2.40</td>
<td>1.71</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>L –acc</td>
<td>29</td>
<td>0.61</td>
<td>2.78</td>
<td>1.59</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>PL –acc</td>
<td>7</td>
<td>1.72</td>
<td>2.52</td>
<td>1.94</td>
<td>0.27</td>
</tr>
<tr>
<td>/i/</td>
<td>L +acc</td>
<td>22</td>
<td>1.08</td>
<td>2.16</td>
<td>1.42</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>4</td>
<td>1.02</td>
<td>1.65</td>
<td>1.49</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>L –acc</td>
<td>20</td>
<td>0.71</td>
<td>2.39</td>
<td>1.42</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>PL –acc</td>
<td>6</td>
<td>0.46</td>
<td>1.67</td>
<td>1.21</td>
<td>0.45</td>
</tr>
<tr>
<td>/o/</td>
<td>L +acc</td>
<td>22</td>
<td>4.92</td>
<td>7.72</td>
<td>6.82</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>7</td>
<td>5.43</td>
<td>7.44</td>
<td>6.65</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>L –acc</td>
<td>27</td>
<td>4.79</td>
<td>8.01</td>
<td>6.48</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>PL –acc</td>
<td>7</td>
<td>4.82</td>
<td>7.28</td>
<td>6.46</td>
<td>0.79</td>
</tr>
<tr>
<td>/u/</td>
<td>L +acc</td>
<td>22</td>
<td>4.86</td>
<td>8.10</td>
<td>6.41</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>8</td>
<td>5.24</td>
<td>7.10</td>
<td>6.56</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>L –acc</td>
<td>31</td>
<td>4.20</td>
<td>8.47</td>
<td>5.94</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>PL –acc</td>
<td>6</td>
<td>4.63</td>
<td>7.36</td>
<td>5.55</td>
<td>1.08</td>
</tr>
<tr>
<td>/u/</td>
<td>L +acc</td>
<td>26</td>
<td>2.47</td>
<td>4.27</td>
<td>3.20</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>PL +acc</td>
<td>10</td>
<td>2.23</td>
<td>3.01</td>
<td>2.45</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>L –acc</td>
<td>20</td>
<td>2.21</td>
<td>4.83</td>
<td>3.00</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>PL –acc</td>
<td>8</td>
<td>1.90</td>
<td>4.10</td>
<td>2.65</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Tab.1.2. Dati relativi a B1-B0 e B3-B2 per vocale, in funzione della modalità enunciativa e dell’ambito accentuale.

L’entità del processo di centralizzazione è data dall’indice di centralizzazione (δ), definito come differenza tra i valori delle distanze euclidee, qui espressi in bark (Tab.1.3), in funzione della modalità enunciativa, all’interno dello stesso ambito accentuale, o dell’ambito accentuale, all’interno della stessa modalità enunciativa (Tab.1.4). Maggiore è il valore di δ, maggiore sarà l’entità del fenomeno. Ovviamente, solo valori positivi denotano centralizzazione; se invece il fenomeno non si manifesta, δ = zero. Come si osserva in Tab.1.4, l’entità della centralizzazione, nel passaggio da L a PL, varia da vocale a vocale. Il confronto, effettuato per mezzo del T-test, tra i valori relativi alle distanze euclide di ciascuna modalità enunciativa in ciascun ambito accentuale (Tab.1.3), ha rivelato che le differenze sono significative (p < 0.05) solo tra vocalismo accentato e non-accentato in modalità L.
<table>
<thead>
<tr>
<th>V</th>
<th>L +acc</th>
<th>PL +acc</th>
<th>L -acc</th>
<th>PL -acc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1-B0</td>
<td>B3-B2</td>
<td>de</td>
<td>B1-B0</td>
</tr>
<tr>
<td>/a/</td>
<td>5,27</td>
<td>3,54</td>
<td>2,73</td>
<td>4,35</td>
</tr>
<tr>
<td>/e/</td>
<td>2,82</td>
<td>1,23</td>
<td>2,49</td>
<td>2,03</td>
</tr>
<tr>
<td>/i/</td>
<td>1,40</td>
<td>1,42</td>
<td>2,55</td>
<td>1,19</td>
</tr>
<tr>
<td>/o/</td>
<td>2,66</td>
<td>6,82</td>
<td>3,12</td>
<td>2,37</td>
</tr>
<tr>
<td>/u/</td>
<td>1,51</td>
<td>6,41</td>
<td>2,90</td>
<td>1,58</td>
</tr>
<tr>
<td>/uw/</td>
<td>1,61</td>
<td>2,79</td>
<td>1,31</td>
<td>1,53</td>
</tr>
<tr>
<td>media</td>
<td>2,55</td>
<td>3,70</td>
<td>2,52</td>
<td>2,18</td>
</tr>
</tbody>
</table>

Tab.1.3. Distanze euclidee dallo schwa calcolato come media dei valori di B1-B0 e di B3-B2 di tutte le vocali per ciascuna modalità enunciativa e ciascun ambito accentuale.

<table>
<thead>
<tr>
<th>δ</th>
<th>+acc: L vs PL</th>
<th>-acc: L vs PL</th>
<th>L: +acc vs -acc</th>
<th>PL: +acc vs -acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a/</td>
<td>0,54</td>
<td>0,46</td>
<td>0,25</td>
<td>0,17</td>
</tr>
<tr>
<td>/e/</td>
<td>0,42</td>
<td>0,36</td>
<td>0,46</td>
<td>0,40</td>
</tr>
<tr>
<td>/i/</td>
<td>0,06</td>
<td>-0,22</td>
<td>0,15</td>
<td>-0,13</td>
</tr>
<tr>
<td>/o/</td>
<td>0,23</td>
<td>0,03</td>
<td>0,21</td>
<td>0,01</td>
</tr>
<tr>
<td>/u/</td>
<td>0,06</td>
<td>0,37</td>
<td>0,45</td>
<td>0,77</td>
</tr>
<tr>
<td>/uw/</td>
<td>-0,38</td>
<td>-0,09</td>
<td>0,22</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Tab.1.4. Indice di centralizzazione (δ) in funzione della modalità enunciativa e dell’ambito accentuale.

1.3.2. Confronto con le vocali cardinali

Dal confronto dei valori medi, approssimativi, in Hz, delle prime due formanti di ciascun vocoide evidenziato in Fig.1.8, con quelli delle vocali cardinali (secondo il quadrilatero da noi proposto) è possibile risalire al corrispondente simbolo fonetico, il quale permetterà d’individuare ciascuna vocale in modo preciso, all’interno del quadrilatero articolatorio.

I valori riportati sotto si riferiscono alla modalità L, posizione accentata.

- /a/. f1: 720 Hz, f2: 1365 Hz. Si tratta d’un vocoide basso centrale, leggermente più alto e più posteriore rispetto al corrispondente cardinale: [a].
- /e/. f1: 420 Hz, f2: 2030 Hz. Vocoide medio-alto: [e].
- /i/. f1: 280 Hz, f2: 2270 Hz. Vocoide alto: [i].
- /o/. f1: 420 Hz, f2: 840 Hz. Vocoide medio-alto: [o].
- /u/. f1: 300 Hz, f2: 890 Hz. Vocoide alto, più centralizzato rispetto al corrispondente cardinale: [u].
- /uw/. f1: 325 Hz, f2: 1500 Hz. Vocoide alto, più anteriore rispetto al corrispondente cardinale: [u].
2. BIBLIOGRAFIA

Il simbolo “&”, posto immediatamente dopo l’anno di pubblicazione, indica il/i curatore/i; va pertanto interpretato come “a cura di”.

